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ABSTRACT 

We propose two algorithms, which effectively use Discrete Co- 
sine Transform (DCT) to obtain complex cepsmm, which we call 
as the Discrete Cosine Transformed CepsaUm (DCTC). The first 
algorithm uses the relation between Discrete Fourier Transform 
(DW andDCT IS. Computing the complex cepstrumusing Fourier 
Tmsfom needs unwrapped phase. The calculadon of the un- 
wrapped phase is sometimes difficult due to the presence of mul- 
tiple zeros and poles near or on the unit circle. Since DCT is a 
real function, its phase can only be 0 or n and phase unwapping 
is done by representing negative by exp( -in) and positive hy 1. 
The motivation for the second algorithm is to obtain DCTC by 
representing DCT sequence itself by magnitude and phase com- 
ponents. Phase unwrapping is performed in the same way as in 
the case of first algorithm. We tested DCTC hy simulating the im- 
pulse response of a system that has multiple poles and zeros near 
or on the unit circle and we have shown that DCTC provides a 
closer match to the theoretical complex cepstmm than the DE'T 
based complex ceps!nun. DCTC has been used to obtain the pitch 
contour of syllables, words and sentences. It is shown that the first 
few coefficients' spectral envelope matches with the envelope of 
the signal spectrum under consideration. We are also exploring 
the applicability of DCTC to speaker recognition. 

1. INTRODUCTION 
The common speech-production model views speech as the output 
of a linear, time-varying system excited by either quasi-periodic 
pulses or random noise. Speech s isa l  is the result of convolving 
excitation and vocal tract itnpuke response. It is possible to sepa- 
rate or "deconvolve" the componentswing linear filter because the 
convolved signals have very different spectra. Homomorphic &- 
convolution bas proven useful in a variety of fields such as speech 
analysis and synthesis, marine and earth seismology, biomedical, 
radar and acoustic system analysis. lts application was introduced 
by Oppenheim and Schafer 111 to speech analysis, echo detection 
and removal. Considerable work covering different applications 
has been performed by Childers et al. [2]. Homomorphic deconvo- 
lution is usually realized using Fourier transform (IT), and is very 
much data dependent. Unfortunately, the nature of FT restricts its 
general applicability. hecise calculation o f  the unwrapped phase 
is sometimes difficult due to spectral notching or multiple bands 
with low signal to noise ratios. Complex c e p s m  [3] entirely 
based on time-domain calculations, avoids or minimizes the prob- 
lem associated with the FT method. Explicit transformations of 
an ordinary mixed phase time sequence into its complex cepsmrm 
time sequence and vice versa are deirved in 131. This does not re- 
quire unwapped phase calculations and no specific windows are 
used to precondition the signal in order to produce a more accurate 

%presentation of the complex cepstrum. In [4], it is shown that if 
the original signal is symmetrical, the Discrete Fouriei Transfom 
(DFT) for cepslral analysis can be replaced by Discrete Cosine 
Transform (DCT). This principle is applied to the evaluation of 
the real and complex pseudocepstrum of speech signals. In both 
the cases, it is found that the use of DCT does not degrade the in- 
formation contained in the cepslrum, while substantially reducing 
the computational complexity. 

In this paper, we propose two new methods ofestimating com- 
plex cepstrum through DCT, which is termed as Discrete cosine 
transformed cepstrum (DCTC). In the first method, forcing half 
sample symmetric extension for the signal under consideration, we 
obtain the relation between DFT and DCT 11. This relation simpli- 
fies the phase unwrapping algorithm. Since DCT is a real function, 
its phase can only be 0 or r. Log, operation has been carried out 
on the sign (represented as exp( -jn) for negative and 1 for posi- 
tive) as well as the magnitude of the DCT. ARer phase unwrapping, 
the resulting sequence of length M is concatenated with conju- 
gatedand flipped version of the same. Now the madified sequence 
of length 2M is inverse Fourier transformed to obtain DCTC rep- 
resentation of the signal. In the second method, no assumptions 
are made rrgarding the signal, and DCTC has been obtained using 
DCT-TDCT combination. Phase unwrapping is same as that of the 
first method. 

2. MATHEMATICAL FORMULATION OF DCTC 
Consider a sequence with a rational Z-transform of the form 

The factors ah's andg,'s arethe zerosand poles inside the contour 
of radius 7, respectively, and lakl ,Jbx/ andlgrl , (dk( are all less 
than 7 and b,'s and dk's are zeros and poles outside the contow 7 
[I]. The complex cepstrum exists if ln(X[z]) is analytic. Only a 
sequence %In) with positive mean and zero mean phase derivative 
will have a unique analytic function In(X[z]) [6 ] .  Thus, a general 
discrete time mixed phase sequence requires time alignment and 
adjusting the constant A to be positive in order for the complex 
cepshum to exist. By definition, the Z-transfom of the cepshum 
sequence of c is 

where Y[z] is the Z-transform of ~[n] ,  obtained by time aligning 
~[n]. After differentiating Eq. 2 with respect to z and taking in- 
verse 2-transform, we obtain 

C[z] = In(Y[z]) (2) 



This nonlinear difference equation is an implicit relation between 
y and c, and for minimum or maximum phase sequences, it can be 
reduced to implicit recurrence expressions [I]. However, the goal 
of this paper is to obtain a DCTC representaion using an orthogo- 
nal transform (DCT). 

2.1. Algorithm I 
Let x[n] be a real sequence, defined for 0 5 n 5 M - 1. Consider 
its half point symmetrically extended sequence y[n]: 

Simplifying DFT of ~ [ n ] ,  

(4) 

Here the terms inside the summation correspond to 

M - l  

( 5 )  
(2n + 1)ak 

2M X [ k ]  = x[n] MS 

n=0 

which is same as the DCT of ~ [ n ]  except for the scaling factors. 
Denoting it byXDcT[k], 

We can write X D C T [ ~ ]  as 

where 
j* [ [ k ]  = -y (Sgn(XDCT[k]) - 1 )  

and 
fOT p > 0 

= { -!;, for p < o  

Therefore, 

Y [ ~ I  = 2exp (g + c[~I) IXDCT[k]l (8) 

Y [ k ]  can be written as exp(-jO[k]) IY[k]l. Therefore 

exp(-j@[kl) IWl = zexp (g + ( P I )  I X D C T [ ~ ] ~  (9) 

Taking logarithm on both sides, we have 

jnk  
In IYIklI --j6'[k] = In(2) +In ( X D C T [ ~ ] (  + + C[k] (10) 

Separating real and imaginary parts of Eq. 10, we have, 

&[k] = h ( 2 )  + h IXDCT[k]l 

-Im[k] = ~ ( z  + ( S g n { X ~ c ~ [ k ] }  - 1 ) )  

Here, 0 6 k 6 M - 1. Construct a 2M length sequence, c[k]  
from M length RHS sequence, as shown below: 

a -k 

Re[k] - j I m [ k ]  : k < M  elk]=( & [ 2 M - l - k ] + j l m [ Z M - l - k ]  : k t M  

Pseudo complex cepstrum is computed for the symmetrically ex- 
tended signal y[n]  as follows: 

374 = IIDFT(C[kl)} 

where, (0 5 n < 2M - 1). f n ]  is real because of the symmetry 
ofC[kl. 

2.2. Algorithm Il 
Instead of nsina the relation between DFT and DCT II for the 
symmetrically &tended signal, this approach uses DCT and corre- 
sponding IDCT [5 ]  to obtain complex cepstrum of a signal. Con- 
sider a real sequence .[.], defined for 0 < n < N - 1 and zero 
else where. Taking N-point DCT of the above sequence, we have 
X [ k ]  defined for 0 5 k 5 N - 1 and can be written as 

X[kl = exp ($ ( ( sgnWkI}  - 1))) IX[kll (11) 

Taking logarithm on both sides 

-js 
I n { x [ k l l =  -3-(sgn{XWI - 1 )  +In IXIkll (12) 

Then we obtain the pseudo complex cepstrum of z[n] as, 

9.1 = Re{lDCT[*(sgn{X[k]} 2 - 1 )  +1.lX[k]II} (13) 

3. LINEAR PHASE COMPONENT IN COMPLEX 
CEPSTRUM 

For the complex cepstrum to exist, it is necessary for the phase 
function to be continuous and be an odd function on the unit cir- 
cle. It does not exist (is not defined) if linear phase is present since 
log zr does not have a Laurent expansion near t = 0, and there- 
fore the phase function is not continuous 121. @evertheless, some 
authours consider the linear phase component of the complex cep- 
strum by assuming that the Fourier transform of log exp(jru) snb- 
stitutes for the Z-transform of log 2' on the unit circle). The linear 
phase component mnst be removed before the complex cepsbum 
calculation. Otherwise, it introduces rapid decaying oscillations in 
the complex cepstrum [2] since its Fourier transform is 

Here, r is equal to the number of zeros of the Z-transform outside 
the unit circle. If this number is large, then the f ; , , h ( n )  term 
can be large and may mask echo peaks in the complex cepstrum. 
The presence of a linear phase term may influence the choice of 
filter selected in the cepstral domain since each p i n t  will have 
contributions from the linear phase component that may change 
the sign from sample to sample. For a finite length sequence, there 
are no poles so that the denominator of Eq.1 is unity and its Z- 
transform is of the form 

X ( z )  is an mth order polynomial in z. We assume that mi zeros 
are inside the unit circle and m,, zeros are outside the unit circle. 
Hence,weobtain(lolkl < 1,1&1 > l)andonsimplifyingEq.15. 
we get the relation between linear phase and the number of zeros 
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outside the unit circle, m, (Proof of this relation is given in [3]). 
Thus we get 

mi m- 

where, 

i=1 

The contribution of the constant term A to the phase is an integer 
multiple of n. The formula for the constant term A is valid for a 
stable sequence with a rational transfer function as well. 

4. VALIDATION OF DCTC USING THEORETICAL 
COMPLEX CEPSTRUM 

We simulate the impulse response of a linear system whose zero 
/pole locations are known. The purpose of this example is to show 
that the DCTC obtained by our method compares well with the the- 
oretical complex cepsmm (TCC) [I]. In Fig. I(a), a complex pole 
pair is placed near the unit circle ( 1 ~ 1 2 1  = 0.99) as is a complex 
zero pair (ltlzl = 0.99). It is shown in [3] that their proximity 
to the unit circle presents severe problems to the unwrapped phase 
calculation used in the FT method. The system impulse response 
x, truncated to 65 points, is shown in Fig. I(b). A complete rep- 
resentation, not shown, would portray a decaying oscillatory func- 
tion with a duration of several hundred samples. Given the pole 
/zero locations, the TCC can be calculated 

Z(n) = In IAl, n = 0 (18) 

The coefficients ak, g k ,  b k ,  and d k  are defined in Eq. 1 and the 
TCC is shown in Fig. l(c). Removing linear phase component 
in the signal by shifting the sequence z by m, = 7 samples to 
the left produces the aligned sequence I. The FT cepstrum is 
shown in Fig. l(d). Here, because of the presence of multiple 
poles and zeros on or very near the unit circle, the resultant phase 
unwrapping is not accurate. The DCTC obtained using the first 
algorithm is presented in Fig. l(e) (solid line) along with the TCC. 
The DCTC obtained using the second algorithm is presented in 
Fig. l(0, which is found to be a close approximation of the TCC. 
We emphasize here that no specific window was used, only sim- 
ple huncation. In our algorithms, DCT has been used for getting 
DCTC and it matches closely with the TCC compared to FT based 
complex cepstrum. 

5. APPLICATIONS OF DCTC 
Simple speech model considers voiced sounds to be produced by 
quasi-periodic pulses of air which in turn cause the vocal card to 
vibrate producing glottal pulses that excite the vocal tract to fiually 
produce speech. For nonnasal sounds the vocal tract is modeled 
as an all pole filter over short time intervals. The glottal source 
is modeled with zeros in the z-domain again over short time in- 
tervals. It is easy to achieve the deconvolution of the pulse (im- 
pulse) train with the composite convolution of the glottal impulse 

response and vocal tract response since these two time sequences 
occupy different frequency ranges in the cepstral domain. Based 
on this deconvolution, we can estimate the pitch period. This is 
accomplished by longpass l i k i n g  the cepstrum and then follow- 
ing the inverse process. Pitch period can also be measured directly 
from the DCTC by measuring the time interval from the origin to 
the first peak, as shown in Fig. 2(a). To test the effectiveness in 
pitch detection, above algorithms are applied to syllables, words 
and sentences to obtain the respective pitch contours. The signals 
are analyzed with a frame length of 30 ms with an overlap of 20 
ms. Fig. Z(c) and (d) show an utterance lniilameghal and its pitch 
contour obtained using our method. Another application is estima- 
tion of the envelope of the speech spectrum. The speech spectrum 
is generally quite scalloped due to the speaker’s pitch. The pulse 
train can be likred from the cepstrum by a shortpass lifter. After 
inverse processing it, we obtain an estimate of the envelope of the 
speech spechum. An example is shown in Fig. 2(b). 

As another application, we used DCTC as a feature for speaker 
identification. We used a 50-speaker subset ofthe TIMIT database. 
The average duration of each sentence in the database is around 3 
sec. The training data consisted of 2 sentences per speaker. Testing 
was carried out on 4 sentences per speaker. Speech was first down- 
sampled to 8 kHz. The duration of each frame was 30 ms, with a 
20 ms overlap between successive frames. Each frame was ham- 
ming windowed and procesed using our algorithms. The feaNre 
vectors consisted of the first 13 DCTC coefficients. Each speaker 
was modeled using a 30-length vector quantization codebook. The 
results were on par with Mel-frequency cepstral coefficients. 44 of 
the 50 speakers were correctly identified. When Fisher’s discrim- 
inant analysis was carried out on the features, all the 50 speakers 
were correctly identified. 

6. CONCLUSIONS 
This paper presents the application of DCT to the computation of 
the DCTC. As compared to the case of FT based complex cep- 
strum, phase unwrapping is easy in the case of DCTC and the latter 
also matches more closely with TCC. The potential applications of 
DCTC in speech processing have been explored through pitch de- 
tection and speaker recognition. 
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