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ABSTRACT

In this paper, we propose a new fast and flexible algorithm based
on the maximum entropy (MAXENT) criterion to estimate stream
weights in a state-synchronous multi-stream HMM. The technique
is compared to the minimum classification error (MCE) criterion
and to a brute-force, grid-search optimization of the WER on both
a small and a large vocabulary audio-visual continuous speech
recognition task. When estimating global stream weights, the MAX-
ENT approach gives comparable results to the grid-search and the
MCE. Estimation of state dependent weights is also considered:
We observe significant improvements in both the MAXENT and
MCE criteria, which, however, do not result in significant WER
gains.

1. INTRODUCTION

Audio-visual speech recognition (AVSR) has recently received a
lot of interest, mainly because the visual modality is not affected
by acoustic noise. Various models of audio-visual integration for
speech recognition have been proposed, among which the multi-
stream hidden Markov model (MSHMM) has been demonstrated
to consistently improve recognition over audio-only ASR [1, 2, 3].
This model is based on the use of parallel HMMs to represent
various streams of information. The parallel HMMs are consid-
ered independent and are re-synchronized at some pre-determined
points to ensure the coherence of the overall process. In state syn-
chronous MSHMMs, the stream HMMs share the same state se-
quence.

One of the key issues in multi-stream modeling is the combi-
nation of partial path stream scores when synchronizing the HMMs.
A popular technique is linear combination of the stream log-like-
lihoods. However, this technique requires that the coefficients of
the linear combination, known as the stream weights, be deter-
mined in some way. Stream weights can be fixed by hand to some
values reflecting the relative confidence one has in a stream. Al-
ternately, they can be estimated at training time or adapted at test
time according to some measure of the reliability of each stream.
Two popular techniques for doing so are brute force search and dis-
criminative training, such as minimum classification error (MCE)
estimation [6]. Here, we shall introduce an alternative approach
based on a maximum entropy (MAXENT) criterion.

In most previous work, stream weights have been taken to be
global, i.e. state independent (see however [4]). In this paper,
we investigate the case of state dependent weights which many
have thought would improve accuracy by reflecting the fact that
the relative reliability of the different streams is dependent on the

speech event. In the state dependent case, we only compare the
MCE and MAXENT trained weights, since it it is impractical to
perform a brute force search.

The paper is organized as follows. We first review the math-
ematical formulation of MSHMMs and then present the stream
weight estimation algorithms used. Finally, experimental results
are given and discussed in sections 4 and 5.

2. STATE SYNCHRONOUS MULTI-STREAM
MODELING

2.1. Mathematical framework

Let us denote �������
	������������������������� the audio-visual feature vec-
tor at time � , where �  ����� and � � ����� are the audio and video feature
vectors respectively. The conditional score of ������� given a state �
is given by

������� ����������� 	"!#�$ �% �'&
� # �(���)� # ��� # �������*� (1)

where the stream pdf
�+� # can be any density function. Gaussian

mixture densities are considered throughout the paper. It must be
noted that (1) does not define a density, even under the constraint
that ,-# &

� # 	/. . To avoid confusion, we will refer to this func-
tion as a score. Finally, the state dependent stream weights can
be tied in different ways, the two extreme cases being fully HMM
state dependent weights and weights tied at the global level.

2.2. Parameter estimation

Two main parameter estimation strategies are possible with multi-
stream models. The first strategy consists in estimating HMMs
with identical topology independently for each stream. The HMMs
are then joined into a multi-stream HMM. In the state-synchronous
case, the stream density for each (possibly context dependent) state
is taken from the corresponding state in the single-stream model.
The transition probabilities are arbitrarily taken from one of the
single stream models, the audio model in our case.

The second strategy consists in using the Baum-Welch algo-
rithm to estimate the parameters of the multi-stream model jointly
for each stream. The state occupation probabilities are calculated
using the current multi-stream model and the parameters of each
stream density

��� # are re-estimated independently. Note that it is
assumed that the stream weights &

� # are known.



3. STREAM WEIGHT ESTIMATION

It can be easily shown that maximum likelihood (ML) estima-
tion of the stream weights is not tractable unless some constraints
stronger than the sum to one constraint are used [5]. However,
such constraints are hardly justifiable. Therefore, stream weight
estimation cannot be carried along with the ML estimation of the
HMM parameters, so suitable algorithms must be devised. Dis-
criminative criteria, such as the popular minimum classification
error (MCE) criterion [6] or the maximum mutual information cri-
terion [7], have been proposed in the literature. Another popular
category of techniques consists in determining global weights from
the signal to noise ratio (see, e.g. [8]).

We briefly recall the MCE algorithm and present a new tech-
nique based on the maximum entropy (MAXENT) criterion. This
new method requires no parameter tuning and is very fast. It also
provides a general framework within which various constraints on
the weights can easily be implemented.

3.1. Minimum classification error

The MCE principle is to minimize an error function. Let ��� ��� be
the audio-video data for the � ’th training utterance of length � � .
Given a state sequence � , the average conditional log-likelihood
per frame is given by� ��� � ���
	 ��� 	 .� � !#�$  % �

��
! � $�� &�� � � � % # ��� � � � � � % # ��� � ���# ��������� (2)

We define the utterance misrecognition measure � ����� as the dif-
ference between the log-likelihood given the alignment ���� ��� of
the reference transcription �� � ��� and a smoothed average of the
log-likelihoods given the alignments of the competing sequences� � ���� . The competing hypotheses are taken as the � -best output
of the recognizer. If � � ���� is the state sequence corresponding to the� ’th decoder hypothesis, the misrecognition measure is given by

� ������	�� � ��� � ���
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(3)

The error function 3������ is itself defined by3 ����� 	 ..4� &5(6* �7��8��9� ������� � ��� � (4)

where 8;:=< and
�

are constants. In (3), " �� 	 . if the two
word sequences �� � ��� and

� � ���� are different and < otherwise, and" � 	 , � " �� .

Given the reference alignment �� � ��� , the � -best output
� � ����

and the corresponding alignments � � ���� , obtained with the current
estimates & �?> �� # of the weights, we shall estimate the weights using
the following probabilistic gradient descent algorithm

& �?>A@ � �� # 	 & �?> �� # �CB >ED 3 �����D & � # � (5)

The steps B > are positive and slowly decrease towards < . The cru-
cial parameters of the MCE algorithm are the error function slope8 , the initial step B � and the decreasing speed of the B > sequence.
A judicious choice for these parameters is necessary for conver-
gence.

training held-out test
#spk #utt #spk #utt #spk #utt #wrd

DIGIT 50 5,490 50 670 50 529 4,513
LVCSR 208 17,111 25 2,277 26 207 3,176

Table 1. Definition of the corpora on the DIGIT and LVCSR tasks.

3.2. Maximum entropy

The maximum entropy criterion [9, 10] dictates that the weights

&
� # should be chosen so as to maximize the posterior log-likelihood

of a fixed reference alignment given the training audio-video vec-
tors, i.e. we must maximize

���GF �H�� 	 � ��	 ! � ��
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with respect to the stream weights, whereM � % � 	 ! � � � ��� � ��� ��������� (7)

This is a convex optimization problem whose unique solution
gives a conditional distribution

F ��� 	 ��������� of maximum entropy,
subject to certain constraints. Unlike the case of the MCE, the
optimization can be performed fairly readily using any one of sev-
eral generic optimization techniques. For this paper we used the
publicly available quasi-newton optimization package L-BFGS-B
(version 2.1) [11]. Virtually all of the computational time required
is spent on the frame conditional likelihood computation. No de-
coding or “judicious” choice of parameters is necessary.

The above model is very flexible and may be generalized in
many ways. As explained below, one generalization that we need
to make use of for the LVCSR task is one in which the states are
clustered. In this case,

F
no longer gives the probability of a state� , but rather of a cluster O P . In this case, we replace the function

�����
in (1) by
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where the maximum is over all states � in class O � .
4. EXPERIMENTS

4.1. Evaluation tasks

Two tasks are considered in these experiments. The first one is a
multi-speaker digit recognition task (DIGIT). The second one is
a speaker independent large vocabulary dictation task (LVCSR).
The experiments are carried out on artificially noisy audio data at
various SNRs in a multi-condition training fashion, that is with
models trained on the noisy data.

The DIGIT vocabulary comprises the digits from one to nine
plus zero and oh. Utterances from 50 speakers were recorded and
divided into three corpora as detailed in table 1. The LVCSR task
is a 10k word speaker-independent continuous dictation task. As
for the DIGIT task, three corpora are considered. In both tasks,
speech babble noise was added to the original audio data at various
SNRs, the video data remaining untouched.

The same set of features were used for both tasks. The au-
dio stream features were obtained by training a linear discriminant
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Fig. 1. WER on the DIGIT and LVCSR tasks using pure audio
and audio-visual independently and jointly trained MSHMMs with
global weights.

analysis (LDA) transforms of the cepstral coefficients, followed
by a maximum likelihood linear transform (MLLT). The LDA and
MLLT transform were trained for each noise condition. The video
stream features were obtained by an LDA-MLLT transform of the
pixels in a region of interest around the mouth as described in [2].

The audio-visual modeling is based on context dependent phone
models. A set of 24 phones was used for the DIGIT task which
correspond to 159 context-dependent states and 6k Gaussians. For
the LVCSR task, 54 phones were considered with a total of about
2,808 states and 50k Gaussians.

4.2. Training of the audio-visual models

First, bootstrap audio and visual context-dependent HMMs were
independently derived from generic audio models using a single
pass retraining EM iteration.

Independently trained MSHMMs were obtained by first train-
ing single-modality HMMs from the bootstrap models by iterating
the EM algorithm. Since the stream HMMs are derived from the
same generic models, the audio and the video models share exactly
the same topology and, in particular, the same context-dependent
state clusterings. The stream HMMs were then joined to create
the multi-stream models. Global stream weights were optimized
for the DIGIT task by a grid-search procedure on the held-out set.
The same global weights are used to join the LVCSR models at
this stage. The reference alignments used in (6) were generated
using these independently trained models.

Jointly trained MSHMMs were obtained by first joining the
stream bootstrap models using the global weights determined for
the independently trained models and by iterating twice the EM
algorithm.

Figure 1 shows the word error rate on both tasks with the au-
dio HMMs alone and with the independently and jointly trained
MSHMMs. These results clearly demonstrate the advantage of
audio-visual speech recognition in noisy conditions over the au-
dio alone speech recognition. The advantage of jointly training the
multi-stream model compared to an independent training of stream
models is also clearly demonstrated.

4.3. Log-likelihood normalization

The log-likelihoods in each stream having very different ranges of
values, they must be normalized before recombination when us-
ing state dependent weights. Indeed, if the video log-likelihoods
are much higher than the audio ones, then any state having a high
video weight compared to the other states would be privileged at
decoding time. Therefore, the log-likelihoods should be normal-
ized so that the average log-likelihood over all states is comparable
in both streams. This is achieved by replacing the log-likelihood
function

� � # ��� # ������� by

��� � # ��� # ������� 	 ��� # ��� # ����������� #
� # � (9)

where � # and � # are the mean and standard deviation of
� � # ��� # ������� .

It was shown on both tasks that comparable results are obtained
with raw and normalized log-likelihoods when global weights, op-
timized by a grid-search procedure, are used. This result means
score normalization does not discard vital information and poten-
tially enables the use of state dependent weights.

4.4. Weight estimation

As mentioned in section 4.2, the jointly trained MSHMMs were
trained using global weights determined by a grid-search opti-
mization using the independently trained MSHMMs. However,
the weights used at training time may not be optimal for the new
model. Also, it is interesting at this point to try to estimate state-
dependent weights. The MCE and MAXENT algorithms described
above were used to estimate both global weights and state-dependent
weights on the held-out set for both tasks. A grid-search optimiza-
tion of global weights was also carried out.

The experiments on the DIGIT task, partially illustrated in
figure 2, demonstrated that the global weights trained with the
MAXENT model performed comparably with the grid-search opti-
mization. The MCE algorithm applied to the estimation of global
weights turned out to be rather unstable and difficult to tune for
convergence, probably due to the small score values obtained after
normalization of the log-likelihood. Indeed, when non-normalized
scores were used instead, the MCE algorithm converged and also
gave results comparable to the ones obtained by grid-search on raw
scores, though slightly worse. This point will be discussed further
in the next section. Finally, the use of state dependent weights did
not improve the performance of the system, whatever estimation
algorithm was used, as can be seen from figure 2. However, it must
be noted that the WER was not degraded by the use of state depen-
dent weights, as was initially the case when raw log-likelihoods
were used.

On the LVCSR task, global weights estimated either by MAX-
ENT or by MCE gave results similar to the ones obtained with the
grid-search optimization. No convergence problem of the MCE
algorithm was observed on this task, even with normalized scores.

For MAXENT, some clustering of states was performed to
avoid the problem of under representation of some states which
were aligned to very few frames in the training sample set. First,
the context-dependent states corresponding to the same context in-
dependent state were clustered together. Then states with fewer
than �<'< samples were clustered together, with states having be-
tween ��� . < < and �	� � .+�
� .A<'< samples belonging to the same
cluster.

The results obtained with state dependent weights are given
in table 2 and compared to the results obtained with grid-search
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Fig. 2. WER on the DIGIT task for grid-search and MAXENT
global weights, as well as MAXENT and MCE state dependent
weights.

optimized global weights. As for the DIGIT task, no significant
improvement was observed using MCE trained state-dependent
weights. Surprisingly, the state dependent weights obtained by
MAXENT did not perform well at the word error level in spite of
a significant reduction of the frame classification errors observed
on a subset of the LVCSR held-out set. For example, we observed
a 28% relative frame error rate reduction at 6 dB.

SNR 20 dB 6 dB 0 dB
grid-search 12.3 24.9 38.8
MCE global 12.1 26.8 42.7
MAXENT global 11.7 24.9 39.1
MCE state 11.7 24.1 38.8
MAXENT state 13.7 32.4 46.0

Table 2. WER on the LVCSR task for global and state dependent
weights.

5. DISCUSSION

One useful result that we have found is that the optimum global
weights can be readily reproduced using the MAXENT technique,
at a lower computational cost than grid-search or MCE. For the
case of state dependent weights trained using MAXENT, both the
MAXENT criteria function, as well as the frame error rate, showed
significant improvement and yet, unfortunately, the WER degraded
significantly. It is common knowledge that, in speech recognition,
frame error rate improvements may not lead to WER improve-
ments, but the fact that there was such a degradation in WER is
surprising and interesting.

A problem with the MCE was that the optimal global weights
found on the DIGIT task with non normalized scores did not match
the optimal weights found by grid-search on the same held-out set.
This result suggests that the smooth utterance error function (4)
does not reflect accurately the word error rate, which is the mea-
sure we are actually trying to minimize. We verified this hypoth-
esis by comparing the average utterance error function obtained
with various values of the global audio stream weights to the WER

obtained with the same weights. This comparison clearly demon-
strated that the minima of the two functions do not match, in par-
ticular when the WER is very low.

As a final remark, we note that, although there has been a gen-
eral sense in the community that the use of state dependent weights
would be likely to improve word error rates, the results reported
here suggest that this may not happen unless weight training is
done using a criterion that is more tightly related to the WER. This
motivates future experiments. For example, a better criterion for
MAXENT training might be to use soft alignments of the training
data to the true transcripts (i.e. posterior class probabilities from
the Baum-Welch algorithm), rather than the hard alignments used
in (6).
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