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Abstract

We present sampling results for certain classes of
two-dimensional signals that are not bandlimited, but
have a parametric representation with a finite number
of degrees of freedom, such as 2-D Diracs, polygons
and bilevel signals with piecewise polynomial bound-
aries. As opposed to standard multidimensional sam-
pling schemes, the proposed methods exploit the prop-
erties of the Radon transform of such signals. In par-
ticular, we demonstrate that by using an appropriate
sampling kernel, one can perfectly reconstruct the sig-
nal from a finite set of samples of its Radon trans-
form, and thus significantly reduce a computational
load. The novel approach we present in the paper,
offers practical algorithmic implementation and is po-
tentially applicable to a large class of two-dimensional
signals.

1 Introduction

Sampling theory has experienced a strong research
revival over the past decade, which led to refinement
of original Shannon’s theory, and development of more
advanced formulations with direct impact in signal
processing and communications. For example, the tra-
ditional sampling paradigm for representation of ban-
dlimited functions can be extended to classes of sig-
nals, such as uniform splines, which are not bandlim-
ited but live on a subspace spanned by a generating
function and its shifts [3].

Recently, it has been shown that it is possible to
develop sampling schemes for a larger class of non-
bandlimited signals, such as stream of Diracs, non-
uniform splines and piecewise polynomials [4]. A com-
mon feature of these signals is that they have a para-
metric representation with a finite number of degrees
of freedom, and can be perfectly reconstructed from a
finite set of samples.

On the other hand, while there are many interest-
ing results for one-dimensional signals [4], the problem

becomes more involved when going to higher dimen-
sions, and typically does not allow direct extensions
of 1-D formulations. Furthermore, most of the multi-
dimensional sampling algorithms encountered in prac-
tice still rely on results from a bandlimited case, which
may lead to unnecessarily high computational load,
particularly for those classes of signals that could pre-
sumably be represented by a finite number of samples.
Therefore, a very interesting but challenging question
is whether it is possible to come up with practical
methods for sampling 2-D signals with a finite com-
plexity, that would allow for perfect reconstruction
from a finite set of samples. In this paper, we con-
sider the problem of developing sampling schemes and
reconstruction formulas for certain classes of such sig-
nals, namely 2-D Diracs generated by a Poisson pro-
cess, polygons and bilevel signals with piecewise poly-
nomial boundaries.

We exploit the properties of the Radon transform
of such signals, and demonstrate that by taking a fi-
nite number of filtered line integrals, the problem can
be reduced to its one-dimensional equivalent, which
is much more convenient for algorithmic implementa-
tion.

2 2-D Signals with Finite Complexity

The class of signals having finite complexity can be
defined as the class having a parametric representation
with a finite number of degrees of freedom. The main
purpose for introducing the complexity (i.e. the rate of
innovation) p, is that it can often be directly related to
the minimum sampling rate, or the minimum number
of samples that leads to perfect reconstruction. Con-
sider for example a two-dimensional bandlimited sig-
nal g(z,y), with the Fourier transform that is nonzero
over a finite region R in the frequency space (fg, fy)-
If we let 2B, and 2B, represent the widths in the f,
and f, directions of the smallest rectangle that en-
closes the region R, then the signal can be perfectly



represented by properly spaced samples,
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where X and V" are such that X < gz~ and ¥ < 53-,
and g, = g(mX,nY). One possible interpretation of
this result is that the bandlimited signal g(z,y) can be
considered as having 1/X and 1/Y degrees of freedom
per unit of length in the z and y directions respec-
tively. A more general form of the above expression
for g(z,y), which extends the subspace of bandlim-
ited functions, is obtained by replacing the function
sinc(z,y) by a more general template, the so-called
generating function ¢(z,y)
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with z, and y, being arbitrary shifts. = When
p(z,y) = §(z,y) and both z, — x,—1 and y, — Yn—1
are i.i.d. random variables with exponential density,
then g(z,y) describes the 2-D Poisson process. Exam-
ples of other classes include simple lines and polygonal
lines, planar parametric curves, as well as bilevel sig-
nals whose boundaries have a finite number of degrees
of freedom. While developing exact sampling formulas
for a very general case may be rather intricate, we be-
lieve that the approach we present in the paper can be
extended to a large class of signals of finite complexity.

3 Finite Set of 2-D Diracs

Consider a signal g(z,y) made up of M Diracs gen-
erated by a 2-D Poisson process. Even though this
signal has a simple parametric representation, its alge-
braic structure provides a good insight into the funda-
mental principles inherent in the algorithms for more
complicated signals. The concept we present is based
on sampling the Radon transform of the signal g(z,y),
and offers a possibility of decomposing the problem
into a set of 1-D equivalents, along with all the inter-
esting extensions that would entail.

Let the signal g(z,y) be represented as

M-1

g(xay) = Z Ck(S(.'L' —Tg,Y — yk) (2)

k=0
and let Rg(p,6) be the Radon transform of g(z,y) [1]

Ry(p,0) = / 9z, 9)8(p—: cos(6) —y sin(6) )dzdy (3)

that is, the integral of g over the line [, ¢ defined by
p(0) = zcos(f) + ysin(d). For any given angle 6o,
the Radon transform Rg(p,6p) can be represented as
a weighted sum of at most M 1-D Diracs, since there
can be more than one Dirac spike on the path of inte-
gration

Mo—1
Rg(p,60) = Y aoxd(p — pox) (4)
k=0
where Moy < M.

Since the signal made up of M 1-D Diracs can be
perfectly recovered from a set of 2M samples [4], by us-
ing either the sinc or the Gaussian sampling kernel, we
can use that result to develop a sampling scheme for
2-D signals as well. Namely, instead of taking the line
integral in equation (3), we can replace the § function
by an appropriate kernel, such as the sinc function.
In other words, we can consider the filtered projection
Rg(p, ) of the signal g(z,y)

Rg(p,0) = / 9z, 5) Bysine(By(p — po))dady

where pg = z cos(6)+y sin(f). An interesting property
emerging form this formulation is that for any angle
6o, the projection Rg(p, o) of g(x,y) is a convolution
of its Radon transform Rg(p, 6o), which is a stream of
1-D Diracs, and the sinc sampling kernel, i.e.

Rg(p,80) = Rg(p, o) * Bysinc(Byp) (5)

where B, is a bandwidth of the sinc sampling ker-
nel (to be chosen appropriately). The above equa-
tion implies that the locations p; and weights aj of
the 1-D Diracs, defined by (4), can be obtained from
N > 2M, samples of ég(p, 6o), that is, p,(6y) =
Rg(p — nT,,6), n = 0,..N —1, where T, = 1/B,
[4]. An outline of the main steps of the algorithm is
given in the Appendix, while a more detailed discus-
sion on this subject can be found in [2, 4].

While the set of locations {por} does not itself de-
fine g(z,y), we will prove that the projection of g(z,y)
onto M + 1 lines entirely specifies the signal. Assume
therefore that we do the projection of g(z,y) onto
M +1 lines with different slopes, determined by angles
0o, 01,... 0. By using the method described above,
we can solve for the coordinates p,,; and weights a,,
m = 0,1,...M of the 1-D Dirac streams along each
line, and thus uniquely specify the set of ”projecting”
lines I, , 4..- Clearly, for any point that belongs to
the set of 2-D Diracs, exactly M + 1 projecting lines
must intersect. A reverse statement, that the points
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Figure 1: Finite Set of 2-D Diracs. (a) 2-D signal
consisting of M = 3 weighted Diracs (b) Reconstruction of the
signal from projecting lines. Points where exactly M +1 = 4
lines intersect correspond to the Diracs in the set.

where M + 1 projecting lines intersect must belong
to the set, can be proved by counterexample. Namely,
assume that exactly M + 1 such lines intersect at some
point A. If A doesn’t belong to the set of Diracs, then
there must be at least one point from the set located at
each of the lines I, , 9., m = 0,1, ...M, which implies
that g(z,y) is being made up of at least M + 1 Diracs,
and that obviously contradicts our basic assumption.
The weights ¢, can be found by solving the system
of M linear equations that we can choose out of
(M + 1)2M equations (available from the set of pro-
jections of g(z,y)). Thus we can state:

Theorem Consider a finite set of M weighted 2-D
Diracs and let p(p) be the 1-D sinc sampling kernel
with bandwidth B,. If N > 2M then the N sample
values of the filtered Radon transform

< Ry(p,0), Bpsine(By(p —nTp)) > n=1,..N

taken along each of the M + 1 different directions 6y,
01,-.. O, uniquely specify the signal.

Note that a similar result holds for the Gaussian kernel
as well.

A simulation example that illustrates the perfor-
mance of the proposed sampling scheme is presented
in Figure 1. The Radon transform of a signal made
up of M = 3 weighted Diracs is sampled by the Gaus-
sian kernel, with six uniform samples (N = 2M) taken
along each of the M + 1 = 4 different directions. The
signal is perfectly reconstructed from the set of pro-
jecting lines, namely, the points where exactly four
lines intersect correspond to locations of the Diracs,
as shown in Figure 1(b).

The above algorithm yields a unique solution by
taking on the order of M? samples of the Radon trans-
form. However, in some cases of more complicated
signals the algorithm’s complexity remains either the
same or can be even reduced, with the only difference
being the use of an alternative sampling kernel, as will
be shown in the sequel.

90,

Figure 2: Bilevel Polygon The projection of a bilevel
polygon onto an arbitrary line is a piecewise linear signal. For
the signal with M vertices, 2M sample values of the filtered
Radon transform taken along each of the M + 1 different direc-
tions uniquely specify the signal.

4 Extension of the results on the 2-D
Poisson Process

After the somewhat ”synthetic” case study of the
previous section, we will next examine extensions of
this result that are of greater practical importance. In
the first example we will consider the problem of sam-
pling a bilevel polygon, while the second application
is related to bilevel signals with piecewise polynomial
boundaries. By exploiting the property that the sig-
nals have a finite number of degrees of freedom, we
will develop sampling methods that are much more
efficient than the existing schemes in terms of compu-
tational requirements.

4.1 Bilevel Polygon

Consider a signal g(z,y) that is a bilevel polygon,
and let vertices be at points (z;,y;), ¢ = 1,2,...M.
Clearly, the signal is uniquely specified by coordinates
of its M vertices, thus it has 2M degrees of free-
dom. An elegant way to solve for the coordinates
(zi,y:), takes advantage of the fact that the projec-
tion of g(z,y) onto an arbitrary line is a piecewise
linear signal, as illustrated in Figure 2.

We can therefore incorporate the sampling schemes
for such 1-D signals into our algorithm and re-
place the ¢ function from (4) by a proper kernel.
Namely, a 1-D piecewise linear signal f(p) having
M pieces, can be uniquely represented by its 2M
samples < f(p),9'? (p — nT,) >, where 3 (p) is
the second derivative sinc sampling kernel given by
IFT{(jw)Qrect(ﬁ)}, with B, = % [4]. Due to the
associativity of the convolution operator, a convolu-
tion of the signal f(p) with ¢ (p) is equivalent to
the convolution of the second derivative f()(p) (i.e. a
stream of Diracs) with the sinc kernel, thus the prob-
lem can be reduced to the one we analyzed in the
previous section. Therefore we have



Proposition 1 Given a bilevel polygon with M ver-
tices and the second derivative sinc sampling kernel
¢ (p) with B, = 7, then the N > 2M samples

< Rg(p,0m), P (p—nTp) > n=1,..N

taken along each of the M + 1 directions g, 61,... Oyr,
are o sufficient representation of the signal.

4.2 Bilevel signal with Piecewise Polyno-
mial Boundary
Define a bilevel signal with a piecewise polynomial
boundary with respect to the x axis as

g(w,y) = { (1) gtief&vﬁe (6)

where p(z) is a piecewise polynomial signal having M
pieces of maximum degree R. We can directly use
the result from the 1-D case, and take the samples of
the projection of g(z,y) on the z-axis, by using the
(R + 1)th derivative sinc kernel (F+1)(z). Since the
(R+1)th derivative p(®+1 () is a collection of at most
M weighted Diracs, we need to take only 2M samples
in order to recover the signal [4], thus we have

Proposition 2 Consider a bilevel signal with a piece-
wise polynomial boundary p(x) having M pieces of
mazximum degree R. The set of N > 2M samples,

< Rg(p,0a)," ™ (p—nTp) > n=1,..N

taken along the x-direction, uniquely represents the
signal.

5 Conclusion

We have developed algorithms for sampling certain
classes of 2-D signals that are not bandlimited, yet
have a finite number of degrees of freedom. The pro-
posed sampling schemes exploit that property, and in
a noiseless case lead to perfect reconstruction from a
finite number of samples of the Radon transform. In
order to derive exact sampling formulas, we used some
techniques already encountered in the context of spec-
tral estimation. The proposed algorithms are very
convenient in terms of computational efficiency, and
are potentially of impact in certain signal processing
applications, such as reconstruction from projections.
Finally, we believe that a large class of sampling prob-
lems can be analyzed within the proposed framework,
opening up an area for further investigation.

APPENDIX

The result we used in the proof of Theorem 1,
namely that it is possible to solve for the locations
and weights of the 1-D Diracs, defined by (4), from

N > 2M samples of ﬁg(p, o), can be derived as fol-
lows. Consider the sample values p,,(6o)

Mp—1

pn(f0) = Z aok Bpsinc(por /Tp — 1) (7
k=0
Mo— .
— (e 021 aor By sin (mpok /T)p) ®)
&~ (mpor/Tp — mn)
If we define a Lagrange polynomial Py (u) = %
where L(u) = kM:OO_ "(u — po/T,), then multiplying

both sides of (8) by P(n), we obtain an expression in
terms of the interpolation polynomials:

Mot 7P« L (n)
(D™D Ln)pa(6) = Y a0k By sin(FHE) =
k=0 P 4

Since the right-hand side of the above equation is
a polynomial of degree My — 1 in the variable n,
then applying M, finite difference makes the left-
hand side vanish, namely, AMo((—1)"L(n)s,) = 0,
n = My, ...N — 1. Therefore, if we let L(u) = Y, lyuF,
the following relation must hold

Mp—1

Y WAM((=1)"n*p(60)) = 0 9)

or written in a matrix form,
V-1=0 (10)

where V is an (N — M) x (Mp+1) matrix. The system
(10) has a non-trivial solution if N — My > My and the
rank(V) <M,. Equation (10) can therefore be used
to solve for the locations py, of the 1-D Diracs. Finally,
the corresponding weights agr can be found from the
system of equations defined in (8), which completes
the proof.
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