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ABSTRACT

Wavelet Packet Modulation (WPM) uses an arbitrary time-
frequency plane tiling to create orthogonal subchannels of
different bandwidths and symbol rates in a multichannel
system. The Wavelet Packet Tree is implemented by iter-
ating a perfect reconstruction two channel transmultiplexer.
We derive operating conditions for the capacity-optimal tree
for a given communication channel and power budget. We
present a fast tree-selection algorithm which achieves this
optimum for the case of a finite complexity transceiver. It
is found that optimal-WPM outperforms conventional mul-
tichannel systems of equal complexity for ISI channels.

1. INTRODUCTION

Conventional multichannel schemes like Discrete Wavelet
Multitone (DWMT) divide the communication channel into
orthogonal subchannels of equal bandwidths [1]. However,
a uniform subchannel distribution may not be optimal, par-
ticularly if it results in a large number of subchannels oper-
ating in adverse conditions or which cannot realistically be
approximated as narrowband. Wavelet Packet Modulation
achieves a nonuniform subchannel distribution which main-
tains subchannel orthogonality by iterating a perfect recon-
struction two-channel transmultiplexer [2].

In this paper we derive operating conditions for the opti-
mal Wavelet Packet Tree, subject to a budget on both power
and complexity. Furthermore, we present a fast tree-selection
algorithm which will achieve this optimum by an informa-
tion theoretic capacity maximization. Comparison of our
modulation scheme with a DWMT scheme of equal com-
plexity shows that optimal-WPM offers significantly im-
proved capacities for ISI channels, and fares no worse than
DWMT in more benign environments.
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2. WAVELET PACKET MODULATION

2.1. Two-Channel Transmultiplexer

The synthesis bank of a two-channel transmultiplexer mod-
ulates independent data signals z;, onto the transmit signal s
as shown in Fig. 1. It is possible to design causal, FIR filters
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Fig. 1. A Two-Channel Transmultiplexer

gk and fy, such that we get perfect reconstruction (PR) of the
recovered signals £ at the analysis bank: £, = z, V k.
For example, an orthogonal transmultiplexer can be defined
using

feln] =
giln] =

g[-n] k=0,1 )
(-1)"go[L — 1 —n], 2

where L is the filter order. Appropriate choice of the fun-
damental filter go (for example a Daubechies wavelet) will
then specify the system [3].

2.2. Wavelet Packet Trees

For simplicity, we represent the perfect reconstruction two-
channel transmultiplexer of Fig. 1 by the schematic of Fig, 2-
(a). Since any channel can be divided into two orthogonal
subchannels, we can iterate this simple structure on one of
its subchannels as illustrated in Fig. 2-(b). By extension, we
have a perfect detection three-channel transmultiplexer. We
can generate any arbitrary PR Wavelet Packet Tree (WPT)
by a similar successive splitting of nodes. :
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Fig. 2. Schematics: (a) 2-Channel and (b) 3-Channel PR
Transmultiplexers

2.3. Terminology

Due to delay considerations it is sensible to impose a maxi-
mum depth of iteration K on any subchannel. We define 6 x
as the complete WPT of depth K and © g as the set of ad-
missable pruned subtrees T of § k¢ (including the unpruned
tree). A branch is one of the arms of the fundamental two-
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Fig. 3. 0k and 7 € Ok for K=3

channel transmultiplexer while node n? is the i*" point of
branch interconnection (out of possible 27) at tree depth or
scale j, 0 < j < K as shown in Fig. 3. It is convenient
to define the ith subchannel at scale j in terms of its own
sampler M} and equivalent filter T} (z), rather than by a
sequence of shared samplers and filters. This is illustrated
for a general synthesis bank in Fig. 4, where the depth of
iteration on subchannel 7 is d;. Suppose that the sequence

Fig. 4. Equivalent Branch Filter Representation

of filters (starting from the root) leading up to node nf is
G(2),G1(2) ...G¥(z) where G (2) € {Go(2),G1(2)}
and G(z) are the Z-transforms of the root filters gg[n].
Then by a simple repeated application of the relevent Noble

identity [4] the equivalent branch filter representation is

]

Ti(z) = [[G"(%) 3)
=1

M = 27 4

(for the analysis bank we would replace G¥ and Gy, by F¥
and F}, respectively and the upsampler by a downsampler
of the same sampling ratio M). Note that increasing index
i does not necessarily correspond to increasing frequency.
With node n} we associate binary variable ‘split(n])’
which determines whether or not it is optimal to split this
node. The means to obtain this value are developed later. A
node-split decomposes the signal space W spanned by the
wavelet packet T (z) at node nf.' into subspaces W,ji':fl and
W2’,+ ! whose direct sum is of course the original space:

wi =wii e wi. )

In words, each node-split decomposes the parent space into
orthogonal child spaces, completely and without redundancy.
Thus any arbitrary tree generated in the above manner will
give rise to a basis for I3(Z) [2].

3. THE OPTIMUM WAVELET PACKET TREE

From the myriad of possible trees 7 € © x we seek the tree
7* which will outperform all others in terms of maximizing
achievable capacity for a given channel (* denotes optimal-
ity throughout).

3.1. Channel Capacity

We consider WPM for a linear discrete-time equivalent chan-
nel of frequency response H (e#“) subject to stationary gaus-
sian receiver noise with spectrum S,,(w). Subchannel or-
thogonality guarantees that the total achievable capacity is
additive over the capacities of the individual subchannels:
C = Y, C;. While an ISI channel will destroy orthogonal-
ity, WPM optimizes the narrowband approximation within
subchannels, and thus orthogonality can be restored by a
one-tap frequency domain equaliser on each, as is the ap-
proach in conventional multichannel schemes. The capac-
ity on each subchannel is thus determined independently in
terms of the power P; on that subchannel by the relation [5]

P (o) |1 (e
Sn(w)

1 ™
= 1
C; o /0 og | 1+ dw,
(6
Ideally, we can approximate each subchannel as a narrow-
band channel of bandwidth B; with gain | H;|?|T;|? and noise
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power IV;, which yields

)

T34 12| 17,2
G = By log (HM)_

N;

3.2. Kuhn-Tucker Analysis and Water Pouring

We must maximize total system capacity C' subject to a
power budget > ; P; < Poudget and fundamental constraint
P; > 0V i. Using Kuhn-Tucker analysis [6] we define a
Lagrange cost functional for minimization as

J=-C+AP. ®
The optimal tree is given by r* = min;ee, J(A). Exploit-
ing subchannel orthogonality in eqn. 8 gives J = 3, J; =
3; [-Ci + AP;] and minimization yields

dC _ dC; _
aF — ap,

A &)

Optimality for the WPT is thus achieved when all subchan-
nels are operating at the same slope on their Capacity-Power
curves. In fact, under the narrowband approximation sub-
stitution of eqn.7 into eqn.9 will yield optimal subchannel
power

* Ei_ __J_Y"___
B = max [0’ ) (IHilleaP)] (10)

which corresponds exactly to the well known water filling
solution [6]. The capacity at optimal power loading can then
be found by back-substitution into eqn.7:

B,-|Ti|2|H.-|2)]

AN 49))]

C} ~ max [O,B,- log (

4. FAST TREE SELECTION ALGORITHM

4.1. Tree Pruning

It is undesirable to rely on a search of all possible trees
7 € Ok in order to identify the optimal tree 7*. It has been
shown for Rate-Distortion optimization in data-compression
that selectively pruning a complete 2% -channel WPT 6,
until each subchannel is operating at minimal cost, will re-
sult in the optimal tree [7]. We apply the principle here,
assuming that channel information is available. The La-
grangian cost is minimized at each tree depth recursively.
Once 7* is identified, power is loaded on each subchannel
using a bisection algorithm to achieve water-pouring. The
procedure is detailed in Fig 5.

1.INITIALIZATION
xDetermine T/(z) for all n in Ok
*Choose arbitrary slope A
*Populate all nodes n{ with their
associated Lagrangian costs JI())
2 . PRUNING
*FOREACH tree depth je{K-1,... 1,0}
» FOREACH node nf i€ {0,1,...,2 —1}
A JO) < TE ) + B0
- then split(n{ ) « NO
-else split(nf) «+ YES and
A e B+ 30
e END
* END
*T* given by locating 4,j(via inorder
traversal of binary tree starting
from root node) s.t. split(nf) =YES
3.POWER LOADING (bisection algorithm)
xPick A < A, such that:
2 (M) < Boudget < 20 PP (A)
*LOOP
2 (0T =CF ()]
T [P On)—P7 )]+
(small € in case slope is singular)
oif Z,‘ P ()\next) > Pbudget
ethen A, ¢ Anext
eelse A; ¢ Anext
*UNTIL 3, P} (Anext) = 2 P} (M) = Boudget

.’\next «

Fig. 5. Formalized Pruning and Loading algorithm

4.2, Comments on the Pruning Algorithm

Algorithm speed can be increased dramatically at the load-
ing stage by using narrowband approximations (eqns. 10
and 11) in determining P;(A) or C;()) for subchannels of
the optimal tree. This is not applicable to the pruning stage
of the algorithm, since suboptimal trees are unlikely to have
narrowband subchannels.

One would instinctively assume that the optimal tree
is always in fact the unpruned WPT g since each sub-
channel is then maximally narrow. Also, at a given oper-
ating slope A, a node-split will always result in increased
capacity. However, this may come at the price of a drain
on power from other channels, thus reducing overall capac-
ity. We account for this by minimizing the Lagrangian cost
Ji = —C; + AP; on every channel rather than simply max-
imizing C;. Of course the full tree # x may well turn out to
be optimum, as we found in many cases. However, for chan-
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nels with particularly non-flat characteristics, it is found that
pruning combined with optimal power-loading can result in
significant capacity improvement over DWMT.

5. SIMULATION RESULTS

Fundamental to comparison of schemes is the issue of com-
plexity. The number of time-frequency atoms in a WPM-
symbol generated by any 7 € © i is 2K. Fast WP Trans-
forms based on polyphase latice representations of any 2 X -
atom WP-Tiling can be implemented with equal complex-
ity [8]. Since the full tree x € Ok actually implements
DWMT it is both fair and simple to compare 7* with 8.
We used complexity constraint K = 6 corresponding to 64-
channel DWMT. Water-pouring was used to optimize sub-
channel powers in both cases. The fundamental WP-bases
were chosen as the Daubechies D4 wavelets of length 8 [4].

For illustrative purposes we picked a simple channel
gain to noise ratio (GNR) |H (e/¢)|?/Sa(w) shown in Fig. 6.
The pruning and loading algorithm is very fast and only
takes about 4 minutes to complete on a S00MHz Pentium
processor, running MATLAB™™, The optimal tree for this
channel is obtained by pruning 31 nodes out of a possible
63, and at optimal power loading results in an 8.8% in-
crease in achievable capacity as compared to that for the
full tree f . Since the mid-frequency region has high GNR,
the pruned tree allocates proportionally more channels there
as shown in Fig. 7. Notice the wide subchannels at high
and low frequency. This nonuniformly allocated 33-channel
system outperforms its equivalently complex, uniform 64-
channel counterpart.

6. CONCLUSION AND FURTHER WORK

We have shown how nonuniform-bandwidth multichannel
schemes as implemented by Wavelet Packet Modulation can
be optimized for a given communication channel. We pre-
sented a fast algorithm to achieve optimum. Furthermore,
it is seen that uniformly allocated schemes such as DWMT
are a subset of WPM and, lacking the degree of freedom to
arbitrarily tile the time-frequency plane, do not perform as
well over ISI channels. It is suggested that combination of
our fast pruning and loading algorithm, with the well known
fast-wavelet transform could form the basis for a very effi-
cient bandwidth optimal multichannel modem.
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