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ABSTRACT 
 
The Davies transformation is a method to transform the steering 
vector of a uniform circular array (UCA) to a vector with 
Vandermonde form. As this form is similar to that of the steering 
vector of a uniform linear array (ULA), we can apply to UCAs 
the many tools that have been developed for ULAs. However, 
the Davies transformation can be highly sensitive to 
perturbations of the underlying ideal array model. In this paper, 
we present a method for deriving a more robust transformation 
using novel optimization techniques. In particular, we consider 
its application to direction of arrival estimation in the presence 
of correlated signals. The effectiveness of the method is 
illustrated through a numerical example. 
 
 
 

1. INTRODUCTION 
 
By virtue of their geometry, uniform circular arrays (UCAs) are 
eminently suitable for applications such as radar, sonar and 
mobile wireless communications where one desires 360° of 
coverage in the azimuthal plane [1]. This innate advantage of 
UCAs is counterbalanced, however, by the uncooperative 
mathematical structure of their steering vectors. In particular, 
many important techniques that have been developed for 
uniform linear arrays (ULAs), such as Dolph-Chebyshev 
beampattern design [2], and spatial smoothing for direction of 
arrival estimation [3] and adaptive and optimum beamforming 
[4] in a correlated signal environment, cannot be applied directly 
to UCAs. In [5, 6], it is observed that the reason for this is 
because the aforesaid techniques exploit the Vandermonde 
structure of a ULA’s steering vector while the steering vector of 
a UCA is not Vandermonde. 

In [7], Davies proposes a method to transform the sensor 
element outputs of a UCA to derive the so-called virtual array. 
The key feature of the virtual array is that its steering vector is 
Vandermonde, or approximately so. In [5], we use the Davies 
transformation to design Dolph-Chebyshev beampatterns for 
UCAs, while in [1] and [6], it is used to enable, respectively, 
direction of arrival estimation and optimum beamforming for 
UCAs in a correlated signal environment. 

Though attractive, the Davies transformation is not without 

problems. Specifically, Davies [7] tacitly assumes that (i) all 
antenna elements have the same omnidirectional response, (ii) 
the electronics associated with each antenna element are 
identical, (iii) the antenna elements are located at their correct 
positions, and (iv) there is no mutual coupling between the 
antenna elements. Clearly, in a real system none of the above 
assumptions will hold. Although in [1], it is pointed out that 
these real-world effects can be ameliorated somewhat by 
calibration, there still remains the issue of residual calibration 
errors. In [8], it is shown through simulation that when errors 
are introduced into the model of an ideal UCA, as represented 
by a perturbation of its steering vector, the performance of the 
UCA can degrade appreciably. The criterion used in [8] to 
assess performance is the Dolph-Chebyshev beampattern 
obtained through the method of [5]. The aim of this paper is to 
find, through global optimization techniques [9, 10], an 
alternative transformation that has the desirable property of the 
Davies transformation, i.e., transforming the steering vector of a 
UCA to Vandermonde form, but is more robust with respect to 
perturbations to the steering vector of an ideal UCA. 

 
2. PROBLEM  FORM ULATION 

 
2.1. The Davies Transformation 
Consider a UCA with N elements and radius r. The nth 
component of the N-dimensional array response (or steering) 
vector ( )�a , 1, ,n N� � , to a narrowband signal of 
wavelength �  arriving from angle � , [ , ]� � �� � , is given by 
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nra G j
N
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where ( )nG �  is the complex gain pattern of the nth element. 
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Fig. 1.  Transformation for UCAs 



Suppose the array elements are all identical and isotropic, 
i.e., ( ) 1nG � � , 1, ,n N�� . Suppose further the antenna 
element outputs are processed as shown in Fig. 1 where 

1, , Nx x�  represent the baseband complex output signals of the 
“ real”  array and 1, , My y� , M N� , represent the baseband 
complex output signals of the virtual array. In [1], it is shown 
that if the transformation matrix T is defined by 

 �T JF  (2) 

where the matrices M M�
�J �  and M N�

�F �  are given by 
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mn N

e � � � �

�F , (4) 

and where 1, ,m M� � , 1, ,n N� � , ( )kJ �  denotes a kth 
order Bessel function of the first kind, and 

 ( 1) 2H M� � �� , (5) 

then the M-dimensional steering vector of the virtual array  
will take on, approximately, the Vandermonde form 

 � �( ) ( ) 1jH jHe eb Ta b� � � �
� �

� � �
� �� �� �

� � . (6) 

Note, in view of Eq. (5), M is odd. 
 
2.2. Robustness 
In [8], it was shown that the Davies transformation can be highly 
susceptible to perturbations in ( )a � . Fig. 2 shows the MUSIC 
spectrum obtained from a UCA with radius 1.118� , 15N � , 
and 13M � . In the signal scenario, there are 5 fully correlated 
signals, each with SNR of 10 dB, arriving from 150− ° , –90°, 
0°, 37° and 85°. Forward-backward spatial smoothing [3] with 5 
subarrays, each of 9 elements, is used to restore the rank of the 
covariance matrix. This is followed by a whitening procedure 
since the noise in the virtual array is not spatially white [1]. Fig. 
2 also shows two realizations of the MUSIC spectrum when the 
gain and phase responses of the antenna elements and their 
locations are perturbed, and mutual coupling between adjacent 
antenna elements are introduced. All perturbations were drawn 
from a uniform random number generator. The limits for gain 
perturbation are 0.005�  (relative to 1); for phase perturbation, 

1� � ; for radial perturbation, 0.005�� ; for angular position 
perturbation, 1� � ; and for mutual coupling, 0.01 0.01j� �  
(relative to 1). Clearly, the MUSIC spectra of the perturbed (or 
non-ideal) array are unacceptable. 

 
2.3. Problem Statement 
The lack of robustness of the Davies transformation can be 
traced to the construction of J, Eq. (3). As can be seen, for some 
choices of m, H, and r � , the magnitude of one or more of the 
diagonal elements of J can approach infinity as the 
corresponding value of 1 (2 )m HJ r� �

� �
 approaches zero. 

Accordingly, the norm of T can become very large. But the 
square of the norm of T gives a measure of the noise 
amplification of the transformation matrix. Therefore, for a T 
with large norm, small perturbations in ( )�a  will translate to 
large perturbations in ( )b� � . 

Based on the above observation, we formulate the 
following semi-infinite optimization problem to find a more 
robust transformation matrix. The basic idea is to trade-off the 

approximation error in the transformation of ( )�a  to a vector 
with Vandermonde form, for robustness. 
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Fig. 2.  MUSIC spectra of an ideal vs. non-ideal UCAs 

Denote the robust transformation matrix by M N�
�U � . 

We find U as follows: 

 2min FU
U  ( 1� ) 

subject to    ( ) ( )� �� �Ua b e ,    � �,� � �� � �  

where F�  denotes Frobenius norm, �  is the absolute value 
norm 
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 � �1 2
T

M� � ��e � , m� �
�� , 1, ,m M� � , (8) 

1T N
m

�
�u �  is the mth row of U and ( )mb �  is the mth element 

of ( )�b . 
Now, since the rows of U are not related in the above 

formulation, ( 1� ) can be solved, row-by-row, as follows: 

For 1, ,m M� � , 2min
m

m Fu
u  ( 2� ) 

subject to    � �Re ( ) ( )T
m m mb� � �� �u a  

and    � �Im ( ) ( )T
m m mb� � �� �u a ,    � �,� � �� � � . 

The advantage of ( 2� ) is that it allows the original problem 
( 1� ) to be solved efficiently. 
 
2.4. Remarks 
1. The robustness of U depends on the choice of m� , 

1, ,m M� � . One method is to set m�  to be some 
multiple of the corresponding value in T where the multiple 
is greater than 1. 

2. If, for a given m, 1m� � , then for that m, ( 2� ) has the 
trivial solution m �u 0 . This follows since ( ) 1mb � � . 

3. As a rule of thumb to robustness, the square of the norm of 



each row of U should not greatly exceed N M . The 
reasoning is as follows. Suppose the output signal from 
each antenna element contains a complex noise term whose 
real and imaginary parts are independent with identical 
variance 2

x� . Also, suppose the noise terms of all the 
antenna elements are mutually independent. The total noise 
from the array of N elements is then given by 22 xN� . 
Suppose the transformation matrix has Frobenius norm 

FU . The total noise at the output of the virtual array is 
then given by 2 22 F x�U . If the transformation is required 
to not increase noise, then we require 2 2 22 2 Fx xN� �� U , 
or 2

F N�U . Finally, suppose the noise gain is distributed 
uniformly over the elements of the virtual array. We then 
get 2 2

F Fm M N M� �u U . 

 
3. QUADRATIC SEM I-INFINITE PROGRAM M ING 
 
3.1. The Dual Parameter ization M ethod 
Consider the mth sub-problem of ( 2� ). Denote this sub-
problem by ( m� ). Define the vector of decision variables 

 � � � � 2Re Im
T

T T N
m m

� �� �
� �

x u u � . (9) 

( m� ) can be written as a standard quadratic semi-infinite 
programming problem as follows. 
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2
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x
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We use the so-called dual parameterization method of [9, 
10] to solve ( m� ). The parameterized dual problem of ( m� ) 
with k parameters is defined as follows. 
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T
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The main results relating ( m� ) and ( ,m k�� ) are stated in the 

following theorem. 

Theorem 1 

(a) There exists a k�  satisfying 0 2k N�
� �  such that the 

optimal value sequence � �� �
*

, 1
k

m k kV
�

��  is strictly 

decreasing, and for k k�� , � � � �*, ,m k m kV V�� �� � . 

(b) The number k�  in (a) is the smallest whole number such 
that for k k�� , the global solution of ( ,m k�� ) provides the 
solution of ( m� ) in the sense that, if * * *( , , )x y z  is a 
solution of ( ,m k�� ), then *x  is the solution of ( m� ). 

Proof  See [9]. 
 
3.2. The Algor ithm 

Based on Theorem 1, the following adaptive algorithm is 
developed in [10]. Define first the following problem. 

 
, 1
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k
T T
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x y
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1

( )
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T
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� ��   and  iy 0� � ,  1, ,i k� �  

where  � �1 2
T

k k� � ��z �  is a fixed vector. 
 

Step 1 Choose any 2
0

N
�x � , a small number 0� � , an 

integer I, an increasing sequence of integers � �ik , and 

a sequence of parameterization sets i� �  

� �� �, , 0, 2 , 1, ,i j i j ij k�� � �� �  such that 

� �� �
� �

,
10, 2

, 0, 2 max min 0
i

i i j
j k

d
� �

� � �
� ��

� � ��  as i � � . (13) 

Step 2 Let 0 � �� . Set 0i � . 

Step 3 Set 1i i� � . 

Find � �1 1( ) ( )i i i iA x c 0� � �
� �

� �� � � ��� . 

Suppose � �,1 ,2 ,, , ,
ii i i i m� � ��

� � ��� . 

 Define ,1 ,2 ,i i

T
m i i i mz � � ��� � �� �� � � . 

Step 4 Solve problem ( , mim� z� ) to obtain an optimal 

solution � �,i ix y . 

Step 5 If i I�     or    1 1
1 1
2 2

T T
i i i i �

� �
� �x Qx x Qx , 

find � �( ) ( )i i i� � �� � � �A x c 0� � �� � . 

Go to Step 3. 

Step 6 Solve problem ( , im m�� ) starting from � �, ,
ii i mx y z . 

Denote the solution by * * *( , , )x y z . Take *x  to be the 

solution of problem ( m� ). 

Theorem 2 

Let the condition (13) be satisfied. Then, the sequence { }ix  
obtained from the Algorithm will converge to the solution of 
problem ( m� ). Therefore, if �  and I are suitably chosen, the  

*x  obtained in Step 6 is the optimal solution of ( m� ). 

Proof  See [10]. 



4. NUM ERICAL EXAM PLE 
 
Consider the UCA of Fig. 2. Table 1 summarizes the squared-
norm and maximum real and imaginary errors of each row of the 
Davies matrix for this UCA. As can be seen, the squared-norms 
of rows 6 and 8 greatly exceed 15/13 1.1538N M � � . Indeed, 
it is the very presence of these rows that render the Davies 
matrix non-robust. 

For the robust transformation matrix, our strategy is to retain 
as many rows of the Davies matrix as possible except for rows 
with large squared-norms. Accordingly, we replace rows 6 and 8 
with rows found by solving ( 2� ) with m�  set to 0.7. The 
MUSIC spectra obtained from the robust transformation matrix 
are shown in Fig. 3. The perturbations on the ideal array are the 
same as those in Fig. 2. The characteristics of the robust 
transformation matrix are summarized also in Table 1. Note the 
increase in approximation error in rows 6 and 8 of the robust 
transformation matrix. Furthermore, we remark that the resulting 
transformation vectors for rows 6 and 8 are related by a phase 
rotation. This also holds true when the optimization is carried 
out for any other pairs of rows in Table 1. Therefore, we only 
need to compute ( 2� ) once for each such pairs of rows. 

 

 Davies M atr ix Robust M atr ix 

Row # Squared-
norm 

M ax  
Error  

Squared-
norm 

M ax 
Error  

1, 13 0.574 0.1770   
2, 12 0.559 0.0701   
3, 11 2.923 0.0570   
4, 10 2.214 0.0159   
5, 9 0.745 0.0027   
6, 8 6513.343 0.0710 146.15 0.7079 

7 0.740 0   

Table 1.  Characteristics of the Davies and robust transformation 
matrices for 15N = , 13M =  and 1.118r λ=  
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Fig. 3.  MUSIC spectra of an ideal and non-ideal UCAs with 

robust transformation matrix 
 
 

5. CONCLUSIONS 
 
In this paper, we addressed the important problem of finding a 
transformation matrix to transform the steering vector of a 
uniform circular array to one with Vandermonde form, subject 
to a robustness requirement as demanded by practical 
considerations. The robust transformation matrix is found by 
posing and solving a quadratic semi-infinite optimization 
problem. We showed that, by an appropriate formulation, we 
can decompose the problem into a set of much simpler 
optimization problems which can then be solved efficiently 
using the dual parameterization method of [9, 10]. Each sub-
problem yields a row of the robust transformation matrix. The 
robustness of the new transformation matrix is demonstrated by 
a simulation example. The simulation example also supports our 
hypothesis that robustness can be gained by sacrificing the 
approximation accuracy of the steering vector of the virtual array 
from its desired Vandermonde form. 
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