Abstract:
We present two minimum mean square error (MMSE) frequency domain estimators of the squared magnitude of a clean speech signal that is degraded by additive noise. These es...Show MoreMetadata
Abstract:
We present two minimum mean square error (MMSE) frequency domain estimators of the squared magnitude of a clean speech signal that is degraded by additive noise. These estimators are derived under the assumption that the DFT (discrete Fourier transform) coefficients of the clean speech are best modelled by the Gamma probability distribution function (PDF) instead of the common Gaussian PDF. The statistics of the perturbing noise is the Gaussian PDF in one case and the Laplacian PDF in the other. The estimators are used as noise reduction filters in the experimental evaluation. We give a comparison with a previously derived estimator which uses the Gaussian PDF as the PDF for speech and noise coefficients.
Published in: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).
Date of Conference: 06-10 April 2003
Date Added to IEEE Xplore: 21 May 2003
Print ISBN:0-7803-7663-3
Print ISSN: 1520-6149