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ABSTRACT

In this paper, a new frequency-domain approach to represent mo-
tions is proposed. The new scheme is based on a band-pass filter-
ing with a set of logGabor spatio-temporal filters. It is well known
that one of the main problems of these approaches is that a filter
response varies with the spatial orientation of the underlying sig-
nal. To solve this spatial dependency, the proposed model allows to
recombine information of motions that has been separated in sev-
eral filter responses due to its spatial structure. For this purpose,
motion patterns are detected as invariance in statistical structure
across a range of spatio-temporal frequency bands. This technique
is illustrated on real and simulated data sets, including sequences
with occlusion and transparencies.

Keywords: Motion representation, spatio-temporal models,
motion pattern, logGabor filters, .

1. INTRODUCTION

The motion is one of the most important information sources used
in the analysis of an scene. Usually, the representation of motion
allows to arrange the scene in order to make easier its analysis
[1, 2, 3].

Many types of motion representation models have been pro-
posed in the literature. In particular, some important approaches
are those based on a band-pass filtering operation with a set of
spatio-temporal filters selective to orientation and scale [4, 5, 6, 7].
These approaches are supported on the interpretation of motion in
the Fourier domain, where the spectral information of a spatio-
temporal translation goes to a plane whose orientation depends on
the direction and velocity of the motion [8, 9, 10]. It is nevertheless
true that one of the main problems of these schemes is that compo-
nents of the same motion with different spatial characteristics are
separated in different responses. Moreover, a filter response will
change if the spatial orientation or scale vary.

To solve the problems described above, we propose a new fre-
quency based approach that groups the separated responses in or-
der to obtain coherent and independent motion patterns. For this
purpose, and using a new distribution of 3D logGabor filters over
the spatio-temporal spectrum,a motion patternis calculated as an
invariance in statistical structure across a range of spatio-temporal
frequency bands. This new scheme recombines responses that,
even with different spatial characteristics, have continuity in its
motion.
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2. THE PROPOSED MODEL

The figure 1 shows a general diagram describing how the data
flows through the proposed model. This diagram illustrates the
analysis on a given sequence showing a clap of hands. The end-
point of analyzing this sequence is to separate the two hand mo-
tions. In a first stage, a three-dimensional representation is per-
formed from the original sequence and then its Fourier transform
is calculated. Given a bank of spatio-temporal logGabor filters, a
subset of them is selected in order to extract significant spectral
information. These selected filters are applied over the original
spatio-temporal image in order to obtain a set of active responses.
In the second stage, for each pair of active filters, their responses
are compared based on the distance between their statistical struc-
ture, computed over those points which form relevant points of
the filters. As a result, a set of distances between active filters is
obtained.

In a third stage, a clustering on the basis of the distance between
the active filter responses is performed to highlight invariance of
responses. Each of the cluster obtained in this stage defines a mo-
tion pattern. In figure 1, two collections of filters have been ob-
tained for the input sequence.

2.1. Bank of spatio-temporal filters

To decompose the sequence, a bank of logGabor filters is used. A
logGabor function can be represented in the frequency domain as:
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whereσθ , σϕ andσρ are the angular and radial standard deviation,
(θo, ϕo) is the orientation of the filter, andρo is the central radial
frequency. The bank of filters should be designed so that it tiles
the frequency space uniformly. Hence we consider a bank with the
following features:

1. For each radial frequency, 17 spherical orientations over dy-
namic planes are considered. Table 1 shows the angular co-
ordinates used in the proposed bank.

2. The radial axis is divided into 3 equal octave bands. The
wavelength in each orientation is set at 3, 6 and 12 pixels
respectively.

3. The radial bandwidth is chosen as 1.2 octaves

4. The angular bandwidth is chosen as 30 degrees

The resultant filter bank is illustrated in the top of figure 1. Due to
the conjugate symmetry in the Fourier domain, the filter design is
only carried out on the half 3D frequency space.
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Fig. 1. A general diagram of the proposed model.

2.1.1. Active filters

In order to reduce the computational cost and to avoid the noisy or
less relevant filter responses, a selection of filters that isolate spec-
tral information corresponding to significant motions is performed.
Given a filterφi, a measure of its relevance is defined as:

wi =
1

Card[V (i)]

∑
(ρ,θ,ϕ)∈V (i)

|F (ρ, θ, ϕ)| (2)

where |F (ρ, θ, ϕ)| is the amplitude of the Fourier spectrum at
(ρ, θ, ϕ), andV (i) represents a spectral volume associated with
the filterφi. To calculateV (i), we consider that a point(ρ, θ, ϕ)
in the spatio-temporal frequency domain will belong toV (i) if

|ρ − ρo| ≤ σρ , |θ − θo| ≤ σθ y |ϕ − ϕo| ≤ σϕ (3)

whereσθ, σϕ, σρ and(θo, ϕo) are the logGabor filter parameters
(let us remark that it is not necessary to calculate the responses of

each filter to obtain these weights)
Using the filter relevance measure defined in (2), an unsuper-

vised classification method is performed for each scale to group
the filters into two classes: active ones and non-active ones. The
cluster whose filters have the highest weights will determine the
set of active filters (that will be notedActive). In our implemen-
tation, a hierarchical clustering [11] is used with a dissimilarity
function between classes defined as

δ(Ci, Cj) = |µi − µj | (4)

where

µk =
1

Card [Ck]

∑
r∈Ck

wr (5)

For each active filter, a set of ‘relevant points’ is computed. We
calculate these points as local energy peaks on the filter responses
[12]: given the responseEi of a filterφi, the maximal ofEi in the
direction of the filter will determine the set of points which will
focus our attention in the next stage.

2.2. Distance between filter responses.

In this section, a distance between the statistical structures of a
given pair of filter responses is proposed. To represent a statistical
structure, we use the notions ofseparable featureandintegral fea-
ture introduced in [13]. A separable feature is defined as any rel-
evant characteristic that may be obtained for a point (phase, local
contrast, energy, etc.). The combination of any subset of separable
features will define an integral feature at a given point(x, y, z) .
In this paper, the five separable features proposed in [13] will be
used.

Let T i(x, y, z) =
[
T i

k(x, y, z)
]
k=1,2,...L

be an integral fea-

ture at(x, y, z) which combinesL separable features, noted asT i
k,

computed on the response of the filterφi. Let d̂
(
T i, T j

)
be the

distance between two integral featuresT i(x, y, z) andT j(x, y, z)
given by the equation:

d̂
(
T i, T j

)
=

L∑
k=1

1

Maxk
d(T i

k, T j
k ) (6)

with Maxk being a normalization factor [13], andd(·) a distance
between separable features (this measured(·) is defined for each
separable feature in [13])

Based on the previous equation, a distance between the re-
sponses of two filtersφi y φj is defined as:

D̂(φi, φj) = D [i, j]2 + D [j, i]2 (7)

where

D [r, s] =
1

Card [P (r)]

∑
P (r)

∣∣∣d̂[T r, T s]
∣∣∣β

 1
β

(8)

with d̂ [T r, T s] being the distance between integral features given
by (6), andP (r) the set of relevant points for the filterφr .The
default value of the exponentβ in (8) has been fixed to3.
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(θ, ϕ)

(0.52, 0.00) (−0.62,−0.53) (−1.29, 0.45)
(0.62, 0.53) (−1.08, 0.97) (−1.05, 0.00)
(1.08, 0.97) (1.08,−0.97) (−1.29,−0.45)

(−1.08, 0.97) (0.62,−0.53) (1.29,−0.45)
(−0.62, 0.53) (1.05, 0.00) (1.57, 0.00)
(−0.52, 0.00) (1.29, 0.45)

Table 1. Angular coordinates associated to the bank of filters (over
an sphere of ratio1).

2.3. Clustering of active filters

In order to obtain a partitionC1, C2, ..., CN of active filters,
with Ci representing a motion pattern, a clustering of the dataset
X = {φi ∈ Actives} into an unknown numberN of clusters is
performed. For this purpose, a hierarchical clustering is used [11]
with a dissimilarity function between classes defined on the basis
of distances between statistical structures as

δ(Cn, Cm) = min
{

D̂(φi, φj) , φi ∈ Cn , φj ∈ Cm

}
(9)

whereD̂(φi, φj) is given by the equation (7).

2.3.1. Selection of the best partition

To select the levell of the hierarchy which will define the best
partitionP l = C1, C2, ..., CN , we propose the following function
of goodness

f(P l) =
γ∗P l

ε∗
P l

(10)

whereε∗P l andγ∗P l are two measures of the congruence and sepa-
ration of the partitionP l respectively, given by the equations:

ε∗P l = max
{

εn | Cn ∈ P l
}

(11)

γ∗P l = min
{

γn | Cn ∈ P l
}

(12)

The congruence degreeεn and separation degreeγn of a cluster
Cn are defined as

εn = max
{
cost(µ∗i,j) | φi, φj ∈ Cn

}
(13)

γn = min {δ(Cn, Cm) | m = 1, ..., N with m 6= n} (14)

whereδ(Cn, Cm) is defined in (9), andcost(µ∗i,j) is the cost of
the optimal path between two elementsφi andφj in Cn calculated
as follow: let

∏
ij be the set of possibles paths linkingφi andφj

in Cn; given a pathπij ∈
∏

ij , its cost is defined as the greatest
distance between two consecutive points on the path:

cost(πij) = max
{

D̂(φr, φr+1) / φr, φr+1 ∈ πij

}
(15)

where φr and φr+1 are two consecutive elements ofπij , and
D̂(φr, φs) is defined in equation (7). The optimum pathπ∗ij ∈∏

ij betweenφi andφj is then defined as the path that links both
filters with minimum cost:

π∗ij = argmin
πi,j ∈ Πi,j

{cost(πi,j)} (16)

3D 3D 3D 3D

Fig. 2. Output of the model with a synthetic sequence.

Due to the merging process of the hierarchical clustering and the
distance between classes used in this case (equation (9)), the con-
gruence degreeεn equals to the distance between the two cluster
which were merged together to obtainCn [13]. Thus, the calculus
of εn do not increase the computational cost of the clustering.

3. RESULTS

In this section, the results obtained with real and synthetic se-
quences are showed to prove the performance of our model. Sev-
eral cases have been tested, from simple motion to occlusions and
transparencies. In all the cases, the figures show the first and the
last frame of the original sequence and the corresponding motions
patterns detected in each case

A synthetic case of pure translational motion with constant
speed is showed in figure 2. Specifically, the example shows three
bars with velocities of (1,0), (-1,0) and (0,-1) pixels/frame respec-
tively. Looking at the 3D representation of the original sequence,
three independent planes can be seen corresponding to the three
bars in motion. Our model separates each one of these planes into
three different spatio-temporal outputs corresponding to the three
motions (each spatio-temporal image is obtained by the sum of the
filters responses of the cluster). From this 3D representation, the
sequence associated to each motion pattern is extracted.

Figure 3 shows three examples with real sequences. The first
case corresponds to a double motion without occlusions where two
hands are moving to clap. The second one shows an example of
occlusion where a hand is crossing over another one. In this case,
where the occlusion is almost complete in some frames, the mo-
tion combines translation and rotation without a constant velocity.
The third case shows an example of transparency where a bar is oc-
cluded by a transparent object placed in the first plane. As figure
3 shows, in all the cases our model generates an output for each
motion pattern present in the sequence. Let us remark that the
problem of the occlusion is solved by our model by mean of the
spatio-temporal continuity of forms. Furthermore, this approach
is capable of detecting motions even when different velocities and
spatial orientations are present.
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Fig. 3. Results with real sequences.

4. CONCLUSIONS

In this paper, a new approach to represent motions has been pre-
sented. For this purpose, a motion pattern has been identified
on the basis of invariance in statistical structure across a range
of spatio-temporal frequency bands. To span the spatio-temporal
spectrum, logGabor functions have been adopted as an appropriate
method to construct filters of arbitrary bandwidth. The new ap-
proach allows to recombine information of motions that has been
separated in several filter responses due to its spatial structure; as
a result, the proposed model generates an output for each coher-
ent and independent motion detected in the sequence, avoiding the
classic problem associated with a representation based on spatio-
temporal filters.

The technique has been illustrated on several data sets. Real
and synthetic sequences combining occlusions and transparency
have been tested. In all the cases, the final results enlightens the
consistency of the proposed algorithm.
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