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Jonas Elbornsson, Fredrik Gustafsson, Jan-Erik Eklund

Abstract— Time interleaving can be used to significantly in-
crease the sampling rate of an ADC system. However, the
problem with time interleaving is that the ADCs are not exactly
identical. This means that time, gain and offset mismatch errors
are introduced in the ADC system, which cause non harmonic
distortion in the sampled signal.

One way to decrease the impact of the mismatch errors is to
spread the distortion over a wider frequency range by random-
izing the order in which the ADCs are used in the interleaved
structure. In this paper we analyze how the spectrum is affected
by mismatch errors in a randomly interleaved ADC system. We
also discuss how the mismatch errors can be estimated.

Index Terms— analog-digital conversion, sampling methods,
signal sampling

I. I NTRODUCTION

A. Fixed interleaving

T HE requirements for higher sample rates in A/D convert-
ers (ADCs) are ever increasing. To achieve high enough

sample rates, a time interleaved ADC system can be used [1],
[2], see Figure 1. A fixed interleaved ADC system is here
achieved by∆M = 0. The time interleaved ADC system
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Fig. 1. Random interleaved ADC system withM times higher sampling
rate than in each ADC.∆M additional ADCs are used to achieve some
randomization, i.e.,∆M + 1 ADCs are available at each sampling instance.

works as follows:

• The input signal,u, is connected to all the ADCs.
• Each ADC works with a sampling interval ofMTs, where
M is the number of ADCs in the array andTs is the
desired sampling interval. Theith ADC gives an output

signalyi. The output signals are multiplexed to form one
output signaly.

• The clock signal to theith ADC is delayed withiTs. This
gives an overall sampling interval ofTs.
The drawback with this ADC system is that three kinds
of mismatch errors are introduced by the interleaved

structure:
• Time errors (static jitter)

The delay time of the clock to the different A/D con-
verters is not equal. This means that the signal will be
periodically but non-uniformly sampled.

• Amplitude offset errors
The ground level can be slightly different in the different
A/D converters. This means that there is a constant
amplitude offset in each A/D converter.

• Gain error
The gain, from analog input to digital output, can be
different for the different A/D converters.
All these errors distort the sampled signal. Apart from
the errors listed here, there are also random errors in

time, amplitude and gain, which are not adressed here. Also
other mismatch errors occur, such as linearity mismatch, more
information is available in [3]. With a sinusoidal input, the
mismatch errors can be seen in the output spectrum as non
harmonic distortion. The effects of the mismatch distortion
are analyzed in, e.g., [4]. With input signal frequencyω0, the
gain and time errors cause distortion at the frequencies

i

M
ωs ± ω0, i = 1, . . . ,M − 1, (1)

whereωs is the sampling frequency. The offset errors cause
distortion at the frequencies

i

M
ωs, i = 1, . . . ,M − 1. (2)

An example of an output spectrum from an interleaved ADC
system with four ADCs with sinusoidal input signal is shown
in Figure 2. This distortion causes problems for instance in a
radio receiver where a weak carrier cannot be distinguished
from the mismatch distortion from a strong carrier. It is
therefore important to minimize the impact of the distortion.

B. Random interleaving

One way to decrease the impact of the distortion is to
randomize the selection of which ADC that should be used
at each time instance. This means that an ADC is picked
at random at each sampling instance. However, the reason
for using the interleaved structure is that each A/D converter
needsM times the desired sampling interval to complete the
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Fig. 2. Simulated output spectrum from interleaved ADC system with four
ADCs. The input signal is a single sinusoid. The distortion is caused by
mismatch errors.

sampling. Therefore only one ADC is available for selection at
each sampling instance, i.e., the bandwidth of each ADC is M
times lower than for the overall system. However, to achieve
some randomization one or more extra ADCs can be used [5],
see Figure 1. With∆M additional ADCs there are always
∆M + 1 ADCs available to select from at each sampling
instance. An example of the possible ADC selections for
M = 4 and∆M = 1 is shown in Figure 3. The randomization
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Fig. 3. An example of the possible ADC selection order forM = 4 and
∆M = 1.

spreads the spikes in the spectrum to a more noise-like shape.
The spectrum for this kind of ADC system will be calculated
in detail in Section IV.

II. N OTATIONS AND DEFINITIONS

In this section we introduce the notation. We assume
throughout the rest of the paper that the overall sampling

interval, for the complete ADC system, isTs = 1. This
assumption is done to simplify notation and is no restriction.

We denote byM the number of ADCs required to achieve
the desired sampling rate, where each ADC needs the time
MTs to complete a conversion.∆M denotes the number
of additional ADCs used to randomize the spectrum. The
total number of ADCs in the system areM + ∆M . The
time, gain and offset errors are denoted∆0

t,i,∆
0
g,i,∆

0
o,i, i =

0, . . . ,M−1,M, . . . ,M−1+∆M respectively. The sampling
time instances for each ADC are picked at random andXk

denotes the ADC used at timek. The time instances when the
ith ADC is used are denotedki. We use the following notation
for the signals involved:
• u(t) is the analog input signal.
• u[k] is the input signal, sampled without errors.
• yi[ki] are the output subsequences from theM + ∆M

ADCs.

yi[ki] = (1 + ∆0
g,i)u(ki + ∆0

t,i) + ∆0
o,i + eq[ki] (3)

i = 0, 1, . . . ,M + ∆M − 1.

Here eq[k] is quantization noise. The quantization noise
is assumed to be uniformly distributed and white.

• Xk is a stochastic variable that picks out which ADC
should be used at timek.

• y[k] is the multiplexed output signal from the randomized
subsequences from all the ADCs. The subsequences are
multiplexed together to form a signal with correct time
ordering. The output signal can be expressed by

y[k] = (1 + ∆0
g,Xk

)u(k + ∆0
t,Xk

) + ∆0
o,Xk

+ eq[k].
(4)

We assume throughout this paper thatu(t) is band limited to
the Nyquist frequency.

We will next establish a few definitions which will be used
later in the paper. A discrete time signalu[k] is said to be
quasi-stationary [6] if

m̄u = lim
N→∞

1
N

N∑
k=1

E{u[k]} (5)

R̄u[n] = lim
N→∞

1
N

N∑
k=1

E{u[k + n]u[k]} (6)

exist, where the expectation is taken over possible stochastic
parts of the signal. Analogously, a continuous time signalu(t)
is quasi-stationary if

m̄u = lim
T→∞

1
T

∫ T

0

E{u(t)}dt (7)

R̄u(τ) = lim
T→∞

1
T

∫ T

0

E{u(t+ τ)u(t)}dt (8)

exist. A stationary stochastic process is quasi-stationary, with
m̄u and R̄u[n] being the mean value and covariance function
respectively. Assume thatu[k] is quasi-stationary. Then the
power spectrum ofu[k] is defined as [6]:

Φu(eiω) =
∞∑

n=−∞
Ru[n]e−jωn. (9)
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Analogously, we define the power spectrum for continuous
time signals as

Φu(ω) =
∫ ∞
−∞

Ru(τ)e−jωτdτ. (10)

We will next define two concepts for measuring the perfor-
mance of an ADC. Assume that the outputy[k] of an ADC
consists of a signal parts[k], a distortion partd[k], and a noise
part e[k]

y[k] = s[k] + d[k] + e[k]. (11)

Then the SNDR (Signal to Noise and Distortion Ratio) [7] is
defined as

SNDR = 10 log10

(
E{s2[k]}

E{d2[k]}+ E{e2[k]}

)
. (12)

The SFDR (Spurious Free Dynamic Range) [7] is defined
for a sinusoidal input signal as the distance between the
signal component in the spectrum and the strongest distortion
component, measured in dB, see Figure 4.
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Fig. 4. The SFDR is defined for a sinusoidal input. SFDR is the differ-
ence between the signal component and the strongest distortion component,
measured in dB.

III. M AIN RESULTS

The main result of this paper is an expression for the
spectrum of the randomly interleaved ADC system. In this
section we summarize these results. A complete derivation of
the results is given in Section IV.

The spectrum of the output signal from a randomly inter-
leaved ADC system is given by (78)

Φy(eiω) = β∆g
Φu(eiω)H∆t

(ω)

+ α∆g

[
Φ̃∆ ∗ (Φu ·H∆t

)
]
(eiω)

+
α∆g

ζ(M,∆M)

[
Φ̃∆ ∗ Φ̃∆ ∗ (Φu · (1−H∆t

))
]
(eiω)

+
β∆g

ζ(M,∆M)

[
Φ̃∆ ∗ (Φu · (1−H∆t

))
]
(eiω)

+ α∆o
Φ̃∆(eiω) + 2πβ∆o

δ(ω) + σ2
q . (13)

where∗ denotes convolution.α∆g
, (48), andβ∆g

, (49), are
constants that depend on the gain errors. Similarlyα∆o

, (51),
andβ∆o

, (52), are constants that depend on the offset errors,
and

ζ(M,∆M) =
M + ∆M − 1
M + ∆M

. (14)

Further,

H∆t
(ω) = (15)

1
(M + ∆M)2

M+∆M−1∑
i=0

M+∆M−1∑
j=0

cos(ω(∆t,i −∆t,j)),

Φ̃∆(eiω) = −ζ(M,∆M) (16)

+ 2Re

{
ζ
eiω(M−1) + η((M − 2)eiω(M−2) + · · ·+ eiω)
eiω(M−1) + 1

1+∆M (eiω(M−2) + · · ·+ 1)

}
.

andσq is the quantization noise standard deviation.
If all the mismatch errors are zero,∆t = ∆o = ∆g = 0,

we get

α∆g
= α∆o

= α∆o
= 0, β∆g

= 1 (17)

and

H∆t
(ω) = 1. (18)

For this case (13) reduces to

Φy(eiω) = Φu(eiω) + σ2
q (19)

as expected.
In Figure 5 Φ̃∆(eiω) is shown forM = 8 and ∆M =

1, 4, 16. This plot shows that the oscillations, and peak value,
decrease when the number of additional ADCs is increased.
This is expected since higher value of∆M means that
there are more ADCs to choose from at each sampling
instance, and the errors are then more randomized. How-
ever

∫ 2π

0
Φ̃∆(eiω)dω is constant, independent of∆M . When

∆M →∞, Φ̃∆(eiω) becomes constant.
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Fig. 5. The mismatch noise spectrum̃Φ∆(eiω) for M = 16 and ∆M =
1, 4, 16.
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In Figure 6 an example of a simulated output signal
spectrum from a randomly interleaved ADC withM = 16,
∆M = 1 and sinusoidal input is shown. The theoretical
spectrum (13) is also shown in this figure. The time errors
are here randomly generated in the range−0.1Ts, 0.1Ts, the
gain errors in the range [-0.1,0.1] and the amplitude errors in
the range [-0.1A,0.1A], where A is the amplitude. We can see
that the simulated spectrum shows good correspondence to the
theoretical spectrum. Figure 7 shows the output spectrum of a
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Fig. 6. Output signal spectrum from a randomly interleaved ADC system
with sinusoidal input. HereM = 16 and ∆M = 1. The upper plot shows
the simulated output spectrum. The middle plot shows a smoothed version
of the simulated spectrum and the lower plot shows the theoretical spectrum
(13).

fixed interleaved ADC system withM = 16 for comparison.
We can see that the SFDR is much better for a randomly
interleaved ADC system. Measurements have also been done
to verify the results on real data. The measurements were done
on a 12-bit randomly interleaved ADC withM = 16 and
∆M = 1. First, the randomization was turned off and only16
ADCs were used. This is shown in Figure 8, where the input
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Fig. 7. Simulated output spectrum from a fixed interleaved ADC system
with sinusoidal input andM = 16.

is sinusoidal of a very low frequency. The low frequency is
chosen in order to minimize the effect of time errors. Here we
see that the interleaving mismatch causes a lot of distortion. In
Figure 9 the randomization is used. Here the distortion peaks
are eliminated and we see a spectrum similar to the theoretical
spectrum shown in Figure 6. In this example the randomization
improves the SFDR with about20dB.
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Fig. 8. Output spectrum from a time interleaved ADC without randomiza-
tion.(real data, not simulated)

In Section IV a complete derivation of the spectrum (13) is
given. Section IV can be skipped without loss of continuity
and the reader can continue reading from Section V.

IV. M ISMATCH NOISE SPECTRUM

In this section we will calculate the spectrum for the noise
introduced by mismatch errors in a randomly interleaved ADC
system. The spectrum fory[k] is given by (9) as

Φy(eiω) =
∞∑

n=−∞
Ry[n]e−iωn. (20)
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Fig. 9. Output spectrum from a randomly interleaved ADC system with
M = 16 and∆M = 1. (real data, not simulated)

To calculate the spectrum we need the covariance function (6)
for y[k]. Assuming that the noiseeq[k] is independent of the
mismatch errors,∆t,∆g,∆o, we get

R̄y[n] = lim
N→∞

1
N

N∑
k=1

E(y[k + n]y[k])

= lim
N→∞

1
N

N∑
k=1

E

{[
(1 + ∆0

g,Xk+n
)u(k + n+ ∆0

t,Xk+n
)

+ ∆0
o,Xk+n

+ eq[k + n]
]
·[

(1 + ∆0
g,Xk

)u(k + ∆0
t,Xk

) + ∆0
o,Xk

+ eq[k]
]}

= E

{
(1 + ∆0

g,Xk+n
)(1 + ∆0

g,Xk
)
}
·

lim
N→∞

1
N

N∑
k=1

E

{
u(k + n+ ∆0

t,Xk+n
)u(k + ∆0

t,Xk
)
}

+ E

{
∆0
o,Xk+n

∆0
o,Xk

}
+ E

{
eq[k + n]eq[k]

}
. (21)

In the last equality we have assumed thatm̄u = 0 for
notational simplicity. However, this is no restriction, since a
mean value different from zero just gives an additive constant.
We have also assumed that the gain errors are independent of
the input signal, which is a reasonable assumption since the
samples are picked at random. We introduce the following
notation for the respective parts of the last expression in (21)

R∆g
[n] = E

{
(1 + ∆0

g,Xk+n
)(1 + ∆0

g,Xk
)
}
. (22)

R̄u,∆t
[n] = (23)

lim
N→∞

1
N

N∑
k=1

E

{
u(k + n+ ∆0

t,Xk+n
)u(k + ∆0

t,Xk
)
}

R∆o
[n] = E

{
∆0
o,Xk+n

∆0
o,Xk

}
(24)

Rq[n] = E

{
eq[k + n]eq[k]

}
. (25)

Using the above notation we can write the covariance fory[k]
as

R̄y[n] = R∆g
[n]R̄u,∆t

[n] +R∆o
[n] +Rq[n]. (26)

From this, we can calculate the spectrum as

Φ̄y(eiω) = Φ∆g
∗ Φ̄u,∆t

(eiω) + Φ∆o
(eiω) + Φq(eiω). (27)

Each expression (22-25) will be evaluated separately in the
following sections. However, to evaluate these expressions we
need a probabilistic model of the ADC system. This will be
investigated next.

A. Probabilistic model

We will now study the random interleaved ADC system, as
described in Figure 1, from a probabilistic viewpoint. We have
the notationXk for the ADC that is used to convert the signal
at timek. Numbering the ADCs from0 to M + ∆M − 1, we
have thatXk ∈ {0, . . . ,M + ∆M − 1}. For the calculation
of the covariance function in the next subsection we will need
the probability that the same ADC is used at a certain time
distance,n. We denote this probability byP (Xk+n = Xk).
Since each ADC needs the timeM to complete the conversion,
the probability P (Xk+n = Xk) depends on the previous
M − 1 time instances. Therefore, to calculate this probability,
we first calculate the joint probability overM − 1 time
instances. To calculate this probability we introduce2M−1

states, represented by binary sequences of lengthM − 1, that
the ADC system can be in at timek + n:

00 . . . 0 =
{Xk+n 6= Xk,Xk+n−1 6= Xk, . . . , Xk+n−(M−2) 6= Xk}
00 . . . 1 =
{Xk+n 6= Xk,Xk+n−1 6= Xk, . . . , Xk+n−(M−2) = Xk}
... (28)

11 . . . 1 =
{Xk+n = Xk,Xk+n−1 = Xk, . . . , Xk+n−(M−2) = Xk}.

Here a0 denotes6= and a1 denotes=. Since the same ADC
cannot be used within a time interval ofM −1, most of these
states are illegal.

a1a2 . . . aM−1, is illegal if ai = aj = 1, i 6= j (29)

Removing the illegal states we haveM states remaining

10 . . . 0
01 . . . 0
... (30)

00 . . . 1
00 . . . 0.
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We first assume thatn ≥ M − 1. The joint probabilities are
denoted as follows:

P
(n)
10...0 = P (10 . . . 0 at timek + n)

P
(n)
01...0 = P (01 . . . 0 at timek + n)

... (31)

P
(n)
00...0 = P (00 . . . 0 at timek + n)

and the probability state vector is denoted

P (n) =


P

(n)
10...0

P
(n)
01...0
...

P
(n)
00...1

P
(n)
00...0

 . (32)

These probabilities can be calculated recursively, and we have
to treat three cases separately here:

• P
(n)
10...0:

If we step back one time instance to timen − 1, we
have the possible states00 . . . 0 and 00 . . . 1. However,
the probability of going from00 . . . 1 to 10 . . . 0 is zero
since the time distance between the use of the same ADC
isM−1 here. This leaves the only possible previous state,
00 . . . 0, and since there are1 + ∆M ADCs available at
each time instance and the probability for selecting any of
those is equal the probability of going to the state10 . . . 0
is 1

1+∆M , i.e.,

P
(n)
10...0 =

1
1 + ∆M

P
(n−1)
00...0 (33)

• P
(n)
0...010...0:

Here we have the two possible states0 . . . 100 . . . 0 and
0 . . . 100 . . . 1 from the time instance before, of which
only the first state is legal. Since the only possible
transition from state0 . . . 100 . . . 0 one time step ahead is
to the state0 . . . 010 . . . 0 the probability of this transition
is one, i.e.,

P
(n)
0...010...0 = 1 · P (n−1)

0...100...0 (34)

• P
(n)
00...0:

In this case we also have two possible states at the
previous time instance,00 . . . 0 and 00 . . . 1. Both these
states are legal and both transitions are legal. From the
state 00 . . . 1 there is only one possible transition, to
the state00 . . . 0, so the probability of this transition is
one. From the state00 . . . 0, two transitions are possible,
to 00 . . . 0 and to 10 . . . 0. The latter transition has a
probability of 1

1+∆M according to the discussion in the
first point above. This means that the first transition has
a probability of1− ∆M

1+∆M = ∆M
1+∆M , i.e.,

P
(n)
00...0 =

∆M
1 + ∆M

P
(n−1)
00...0 + 1 · P (n−1)

00...1 . (35)

To summarize, we have a transition probability from time
differencen− 1 to time differencen of

P (n) =


0 0 · · · 0 1

1+∆M

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 ∆M
1+∆M


︸ ︷︷ ︸

A

P (n−1). (36)

The assumption at the derivation of these probabilities was
thatn ≥M −1. However, we will see that this is true for any
n > 0. First considern = 0. Then we know thatXk+n = Xk,
i.e.,

P (0) =


1
0
...
0

 . (37)

For 0 < n < M − 1, we haveP (n)
10...0 = P

(n)
00...0 = 0 and

P (n)
a1a2...aM−1

=
{

1 if an = 1, ai = 0, i 6= n
0 otherwise

, (38)

which is exactly

P (n) = AP (n−1). (39)

How the probability state vector evolves with the time differ-
ence,n, is summarized by

P 0 P (1) P (2) · · · P (M) P (M+1) · · · P (∞)
1
0
0
...
0




0
1
0
...
0




0
0
1
...
0

· · ·


1
1+∆M

0
0
...

∆M
1+∆M





∆M
(1+∆M)2

1
1+∆M

0
...

(∆M)2

(1+∆M)2


· · ·



1
M+∆M

1
M+∆M

1
M+∆M

...
1+∆M
M+∆M


(40)

To calculate the covariance function we need the probability
P (Xk+n = Xk) which is equal toP (n)

10...0. This probability
can be calculated recursively, forn ≥ 0, by the state space
form

P (n+1) = AP (n) +Bδ[n+ 1] (41)

P (Xk+n = Xk) = CP (n)

whereA is as defined in (36) and

B =
[

1 0 · · · 0
]T

C = [ 1 0 · · · 0 ]. (42)

Here the driving impulseδ[n+ 1] is used instead of an initial
state onP . The state space form only gives the probabilities
for n ≥ 0 but the probability is symmetric in time, so that

P (Xk−n = Xk) = P (Xk+n = Xk). (43)
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B. Covariance functions

In this subsection we will evaluate the different parts (22-
25) of the covariance function̄Ry[n].

We start with the gain error covariance,R∆g
[n]. The

probabilities are the same, independent of the ADC numberi,
which gives

R∆g
[n] = E{(1 + ∆0

g,Xk+n
)(1 + ∆0

g,Xk
)}

= P (Xk+n = Xk)
1

M + ∆M

M+∆M−1∑
i=0

(1 + ∆0
g,i)

2

+ (1− P (Xk+n = Xk))
1

(M + ∆M − 1)(M + ∆M)
M+∆M−1∑

i=0

∑
j 6=i

(1 + ∆0
g,i)(1 + ∆0

g,j). (44)

From (41) we can calculate the stationary value by solving
P̄ = AP̄ , and from this we can calculate

lim
n→∞

P (Xk+n = Xk) = CP̄ =
1

M + ∆M
. (45)

This means thatR∆g
[n] does not converge to zero. We

therefore rearrange (44) in one part,R̃∆, that converges to
zero and a constant.

R∆g
[n] = α∆g

R̃∆[n] + β∆g
, (46)

where

R̃∆[n] =
(
P (Xk+n = Xk)− 1

M + ∆M

)
, (47)

α∆g
=

1
M + ∆M − 1

(
M+∆M−1∑

i=0

(1 + ∆0
g,i)

2

− 1
M + ∆M

(
M+∆M−1∑

i=0

(1 + ∆0
g,i)

)2
 (48)

and

β∆g
=

1
(M + ∆M)2

(
M+∆M−1∑

i=0

(1 + ∆0
g,i)

)2

. (49)

The offset error covariance,R∆o
[n], can be calculated in a

similar way as the gain error covariance function

R∆o
[n] = E{∆0

o,Xk+n
∆0
o,Xk
}

= α∆o
R̃∆[n] + β∆o

(50)

where

α∆o
=

1
M + ∆M − 1

(
M+∆M−1∑

i=0

(∆0
o,i)

2

− 1
M + ∆M

(
M+∆M−1∑

i=0

∆0
o,i

)2
 (51)

and

β∆o
=

1
(M + ∆M)2

(
M+∆M−1∑

i=0

∆0
o,i

)2

. (52)

To express the combined time error and signal covariance
function, Ru,∆t

[n], we have to involve the continuous time
covariance function (8). From the assumption that the input
signal is band limited to the Nyquist frequency, we have that
Ru[n] = Ru(n). This gives

Ru,∆t
[n] =

lim
N→∞

1
N

N∑
n=1

E

{
u(k + n+ ∆0

t,Xk+n
)u(k + ∆0

t,Xk
)
}

= P (Xk+n = Xk)Ru(n) +
{

1− P (Xk+n = Xk)
}

(53)

1
(M + ∆M)2 −M −∆M

M+∆M−1∑
i=0

∑
j 6=i

Ru(n+ ∆t,i −∆t,j).

This can be rearranged into one part that depends on the
probabilistic model (41), and one part that does not

Ru,∆t
[n] = R̃∆[n]

(
Ru[n]− R̃u,∆t

[n]
)

+
1

M + ∆M
Ru[n] +

M + ∆M − 1
M + ∆M

R̃u,∆t
[n], (54)

where

R̃u,∆t
[n] =

1
(M + ∆M − 1)(M + ∆M)

M+∆M−1∑
i=0

∑
j 6=i

Ru(n+ ∆t,i −∆t,j). (55)

Finally, we should calculate the quantization noise part of
the covariance function. With sufficiently many quantization
levels, a uniformly distributed white noise is a good model of
the quantization noise [8] for most input signals.

Rq[n] = σ2
qδ[n], (56)

whereσ2
q = q2

12 , [9], andq is the quantization step.

C. Spectrum

The spectrum of a product of covariance functions is a
convolution of the respective spectra [10]. This means that
we can calculate the spectrum ofy[k] from (26) as

Φy(eiω) =
1

2π

∫ π

−π
Φu,∆t

(ei(ω−γ))Φ∆g
(eiγ)dγ

+ Φ∆o
(eiω) + Φq(eiω). (57)

We will next evaluate each part of (57) separately, starting
with Φ∆g

(eiω). From the definition of spectrum and (46), we
get

Φ∆g
(eiω) = α∆g

∞∑
n=−∞

R̃∆[n]e−iωn + β∆g

∞∑
n=−∞

e−iωn.

(58)

The second term of (58) can be associated with a Dirac
function [11], if we restrict the domain toω ∈ [−π, π].

β∆g

∞∑
n=−∞

e−iωn = 2πβ∆g
δ(ω), ω ∈ [−π, π]. (59)
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Next, the first term of (58) will be evaluated. To evaluate this,
we need to transform the state space description (41) to a
transfer function

P (Xk+n = Xk) = C(qI −A)−1Bqδ[n]

=
qM−1(q − ∆M

1+∆M )

qM−1(q − ∆M
1+∆M )− 1

1+∆M

δ[n], n ≥ 0, (60)

where we get the second equality by evaluating the expression
C(qI − A)−1B. The probability is symmetric soP (Xk+n =
Xk) = P (Xk−n = Xk). In the same way we can write the
constant part of (47) as output from a system

1
M + ∆M

=
1

M + ∆M
q

q − 1
δ[n], n ≥ 0. (61)

Putting (60) and (61) together and eliminating the pole and
zero inq = 1 we get

For n ≥ 0

R̃∆[n] = P (Xk+n = Xk)− 1
M + ∆M

= ζ
qM−1 + η((M − 2)qM−2 + · · ·+ q)
qM−1 + 1

1+∆M (qM−2 + · · ·+ 1)
δ[n] (62)

where

ζ(M,∆M) =
M + ∆M − 1
M + ∆M

(63)

and

η(M,∆M) =
1

M − 1 +M∆M + (∆M)2
. (64)

This means that we can calculate the spectrum as

Φ̃∆(eiω) =
∞∑

n=−∞
R̃∆[n]e−iωn (65)

= −R̃∆[0] + 2Re

{ ∞∑
n=0

R̃∆[n]e−iωn
}

= −ζ(M,∆M)

+ 2Re

{
ζ
eiω(M−1) + η((M − 2)eiω(M−2) + · · ·+ eiω)
eiω(M−1) + 1

1+∆M (eiω(M−2) + · · ·+ 1)

}
.

In the last expression the dependence onM and ∆M is
omitted forη andζ for convenience. To summarize, we have

Φ∆g
(eiω) = α∆g

Φ̃∆(eiω) + 2πβ∆g
δ(ω), (66)

whereΦ̃∆(eiω) is as defined in (65). The offset error covari-
ance (50) is similar to the gain error covariance (46) except
for the constantsα andβ. This means that we get the offset
error spectrum directly from (66) by replacing the constants

Φ∆o
(eiω) = α∆o

Φ̃∆(eiω) + 2πβ∆o
δ(ω). (67)

Next, the time error part of the spectrum will be evaluated.
Calculating the spectrum from (54) we get

Φu,∆t
(eiω) =

1
M + ∆M

Φu(eiω) +
M + ∆M − 1
M + ∆M

Φ̃u,∆t
(eiω)

+
1

2π

∫ π

−π
Φ̃∆(ei(ω−γ))(Φu(eiγ)− Φ̃u,∆t

(eiγ))dγ. (68)

We haveΦ̃∆(eiω) from (65), andΦu(eiω) is the spectrum of
the input signal. What remains to calculate then isΦ̃u,∆t

(eiω),

which is the Fourier transform of the covariance function (55).
To calculate this we have to start from the continuous time
covariance function. If

R̃(n) = R(n+ ∆), (69)

we have the “spectrum” [10] (this is not really a spectrum
sinceR̃(n) is not a real covariance function, but the sum of
these “spectra” is a real spectrum, so we use the same notation
here).

Φ̃(ω) = Φ(ω)eiω∆. (70)

Using (70) in (55) we get

Φ̃u,∆t
(ω) =

Φu(ω)
(M + ∆M − 1)(M + ∆M)

M+∆M−1∑
k=0

∑
j 6=i

eiω(∆t,k−∆t,j). (71)

This can be rewritten as

Φ̃u,∆t
(ω) = −Φu(ω) +

Φu(ω)
(M + ∆M − 1)(M + ∆M)

·
M+∆M−1∑

i=0

M+∆M−1∑
j=0

cos(ω(∆t,i −∆t,j)). (72)

The discrete time spectrum can be calculated from the contin-
uous time spectrum using Poisson’s summation formula [10].
Since we assume thatu(t) is band limited to the Nyquist
frequency we have

Φ̃u,∆t
(eiω) = Φ̃u,∆t

(ω), ω ∈ [−π, π]. (73)

Putting (72) and (65) into (68) we get

Φu,∆t
(eiω) =
1

ζ(M,∆M)
(
Φ̃∆ ∗ [Φu · (1−H∆t

)]
)
(eiω) + Φu(eiω)H∆t

(ω),

(74)

where∗ denotes convolution, and

H∆t
(ω) = (75)

1
(M + ∆M)2

M+∆M−1∑
i=0

M+∆M−1∑
j=0

cos(ω(∆t,i −∆t,j)).

For small values of∆t, H∆t
(ω) can be approximated by a

second order Taylor expansion

H∆t
(ω) ≈ (76)

1− ω2

(M + ∆M)2

M+∆M−1∑
i=0

M+∆M−1∑
j=0

(∆t,i −∆t,j)2.

Finally, the quantization noise part of (57) should be eval-
uated. Here we have assumed a white noise model of the
quantization, and the spectrum is therefore constant

Φq(eiω) = σ2
q (77)



9

To summarize, the output spectrum of the randomly inter-
leaved ADC system is

Φy(eiω) = β∆g
Φu(eiω)H∆t

(ω)

+ α∆g

[
Φ̃∆ ∗ (Φu ·H∆t

)
]
(eiω)

+
α∆g

ζ(M,∆M)

[
Φ̃∆ ∗ Φ̃∆ ∗ (Φu · (1−H∆t

))
]
(eiω)

+
β∆g

ζ(M,∆M)

[
Φ̃∆ ∗ (Φu · (1−H∆t

))
]
(eiω)

+ α∆o
Φ̃∆(eiω) + 2πβ∆o

δ(ω) + σ2
q . (78)

Here the first term is the signal part of the spectrum, and the
rest is noise and distortion. We can see that even the signal
part is somewhat distorted, by multiplication withH∆t

(ω).
However, this is not significant for most applications, since
H∆t

(ω) ≈ 1 for small values of∆t.

D. Asymptotic properties

If we in (65) let ∆M → ∞, while M is kept constant we
get

Φ̃∆(eiω) = 1, (79)

i.e., white noise. This is natural since we then can choose
randomly from almost all ADCs at every time instance. Putting
this into (78) the output spectrum is

Φy(eiω) = β∆g
Φu(eiω)H∆t

(ω)

+ α∆g

1
2π

∫ π

−π
Φu(eiω)dω

+ β∆g

1
2π

∫ π

−π
Φu(eiω)(1−H(ω))dω

+ α∆o
+ 2πβ∆o

δ(ω) + σ2
q . (80)

The spectrum here consists of the signal spectrum, a Dirac
pulse inω = 0 and white noise, where the variance of the
white noise depends on the variance of the gain, offset and
time errors and the quantization.

V. SINUSOIDAL INPUT

So far we have not assumed anything about the input signal.
In this section we will evaluate the spectrum with a sinusoidal
input and compare it with the case with no additional ADCs,
i.e., ∆M = 0. We assume, in this section, an input signal

u(t) = A cos(ω0t). (81)

The spectrum ofu(t) is then

Φu(ω) =
2πA2

4
(δ(ω − ω0) + δ(ω + ω0)). (82)

We assume thatA is chosen such that almost the full range of
the ADC is used here. With anN -bit ADC, the quantization
step then isq = 2A

2N
and the quantization noise variance is

σ2
q = 4A2

12·22N .

A. Random interleaving

With random interleaving we then get the output signal
spectrum by putting (82) into (78)

Φy(eiω) =
πA2β∆g

2
H∆t

(ω0)
(
δ(ω − ω0) + δ(ω + ω0)

)
+
A2α∆g

4
H∆t

(ω0)
(

Φ̃∆(ei(ω−ω0)) + Φ̃∆(ei(ω+ω0))
)

+
A2α∆g

4ζ(M,∆M)

(
1−H∆t

(ω0)
)

(
Φ̃∆ ∗ Φ̃∆(ei(ω−ω0)) + Φ̃∆ ∗ Φ̃∆(ei(ω+ω0))

)
+

A2β∆g

4ζ(M,∆M)

(
1−H∆t

(ω0)
)

(
Φ̃∆(ei(ω−ω0)) + Φ̃∆(ei(ω+ω0))

)
+ α∆o

Φ̃∆(eiω) + 2πβ∆o
δ(ω) +

4A2

12 · 22N
. (83)

Here we can see that the sinusoidal spectrum is in the first
term, while the rest is noise and distortion.

B. Fixed interleaving

For comparison, we will here evaluate the spectrum for a
fixed interleaved ADC system (∆M = 0) with sinusoidal
input. The covariance function ofy[k] is as in (26)

R̄y[n] = R∆g
[n]R̄u,∆t

[n] +R∆o
[n] +Rq[n] (84)

which gives the spectrum

Φ̄y(eiω) = Φ∆g
∗ Φ̄u,∆t

(eiω) + Φ∆o
(eiω) + Φq(eiω). (85)

We start withR∆g
[n], which is now periodic and symmetric

R∆g
[n] =

1
M

M−1∑
i=0

(1 + ∆0
g,i)(1 + ∆0

g,(i−n) modM )

R∆g
[M + n] = R∆g

[n] (86)

R∆g
[−n] = R∆g

[n].

The spectrum is then given by [6]

Φ∆g
(eiω) =

2π
M

M/2−1∑
k=−M/2

Φp∆g
(ei2πk/M )δ(ω − 2πk/M),

(87)

where

Φp∆g
(eiω) =

M−1∑
n=0

R∆g
[n]e−iωn. (88)

The calculations forR∆o
[n] are similar and we get the

covariance function

R∆o
[n] =

1
M

M−1∑
i=0

(
∆0
o,i∆

0
o,(i−n) modM

)
(89)
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and the spectrum

Φ∆o
(eiω) =

2π
M

M/2−1∑
k=−M/2

Φp∆o
(ei2πk/M )δ(ω − 2πk/M),

(90)

where

Φp∆o
(eiω) =

M−1∑
n=0

R∆o
[n]e−iωn. (91)

The above expressions are valid for a general input signal.
However, for the time error part we restrict the calculations
to a sinusoidal input for notational simplicity. The time error
covariance function is

Ru,∆t
[n] =

A2 lim
N→∞

1
N

N−1∑
k=0

cos(k + n+ ∆t,k+n) cos(k + ∆t,k)

=
A2

2
lim
N→∞

1
N

N−1∑
k=0

(
cos(2ω0k + ω0n+ ω0(∆t,k+n + ∆t,k))

+ cos(ω0n+ ω0(∆t,k+n −∆t,k))
)

=
A2

2M

M−1∑
k=0

cos(ω0n+ ω0(∆t,k+n −∆t,k)). (92)

Calculating the Fourier transform of (92) we get the spectrum

Φu,∆t
(eiω) =

πA2

M

M/2−1∑
k=−M/2

Φp∆t
(ei2πk/M ) ·[

δ

(
ω −

(
ω0 +

2πk
M

)
[−π,π]

)
+ δ

(
ω +

(
ω0 −

2πk
M

)
[−π,π]

)]
. (93)

where

Φp∆t
(eiω) =

M−1∑
n=0

R∆t
[n]eiωn (94)

and

R∆t
[n] =

1
M

M−1∑
i=0

cos(ω0(∆t,i+n −∆t,i)). (95)

Here ω[−π,π] = ω + n · 2π wheren is an integer such that
ω[−π,π] ∈ [−π, π]. Putting (87), (90) and (93) into (85) we get

the output spectrum for the fixed interleaved ADC system

Φy(eiω) =

πA2

2M2

M/2−1∑
m=−M/2

M/2−1∑
k=−M/2

Φp∆g
(ei

2πm
M )Φpu,∆t

(ei
2πk
M ) ·[

δ

(
ω −

(
ω0 +

2π(k +m)
M

)
[−π,π]

)
(96)

+ δ

(
ω +

(
ω0 +

2π(k +m)
M

)
[−π,π]

)]

+
2π
M

M/2−1∑
k=−M/2

Φp∆o
(ei2πk/M )δ(ω − 2πk/M) +

4A2

12 · 22N
.

An example of the output spectrum from a fixed interleaved
ADC system with sinusoidal input and mismatch errors was
shown in Figure 2.

C. SNDR

In this section we will calculate and compare the SNDR for
random interleaved ADCs and fixed interleaved ADCs. For the
randomly interleaved ADC the signal energy is

E{s2[k]} =
2πA2β∆g

4
H∆t

(ω0)
∫ π

−π
(δ(ω − ω0) + δ(ω + ω0))dω

= πA2β∆g
H∆t

(ω0). (97)

We get the distortion energy by integrating all but the first
term of (83)

E{e2[k]} = πA2α∆g
ζ(M,∆M) + πA2β∆g

(1−H∆t
(ω0))

+ 2πζ(M,∆M)α∆o
+ 2πβ∆o

+
2πA2

3 · 22N
. (98)

If we assume that the mean values of the respective errors are
zero, we get

β∆o
= 0, β∆g

= 1 (99)

α∆o
=

1
ζ(M,∆M)

σ2
∆o
, α∆g

=
1

ζ(M,∆M)
σ2

∆g
,

where

σ2
∆o

=
1

M + ∆M

M+∆M−1∑
i=0

∆2
o,i

σ2
∆g

=
1

M + ∆M

M+∆M−1∑
i=0

∆2
g,i. (100)

Further, if we assume that the time errors are smallH∆t
(ω)

can be approximated by a Taylor expansion

H∆t
(ω) ≈ 1− ω2σ2

∆t
, (101)

where

σ2
∆t

=
1

M + ∆M

M+∆M−1∑
i=0

∆2
t,i (102)
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With these assumptions (98) can be simplified to

E{e2[k]} = πA2(σ2
∆g

+ ω2
0σ

2
∆t

+
σ2

∆o

A2/2
+

2
3 · 22N

). (103)

With the assumption that the mean values of the errors are
zero and that the time errors are small we get the signal energy
for the fixed interleaved case

E{s2[k]} = (104)

πA2

M2

M/2−1∑
k=−M/2

Φp∆g
(ei

2πk
M )Φp∆t

(ei
2πk
M ) ≈ πA2(1− ω2

0σ
2
∆t

)

and the distortion energy

E{e2[k]} =
∫ π

−π
Φy(eiω)dω − E(s2[k])

≈ πA2(σ2
∆g

+ ω2
0σ

2
∆t

+
σ2

∆o

A2/2
+

2
3 · 22N

), (105)

which is exactly the same as for the randomly interleaved case.
This means that the SNDR is the same for both the randomly

interleaved ADC system and the fixed interleaved ADC system

SNDR = 10 log10

 πA2(1− ω2
0σ

2
∆t

)

πA2(σ2
∆g

+ ω2
0σ

2
∆t

+
σ2

∆o
A2/2 + 2

3·22N )


≈ −10 log10(σ2

∆g
+ ω2

0σ
2
∆t

+
σ2

∆o

A2/2
+

2
3 · 22N

). (106)

This is expected since we cannot change the total amount of
distortion by changing the order in which we select the ADCs.
However, the shape of the distortion is very different between
the fixed interleaved and the randomly interleaved case. If we
study the SFDR we can see that in the randomly interleaved
case there are noδ-spikes in the output spectrum. This means
that the SFDR is theoretically infinite for an infinitely long
data sequence in the randomly interleaved case. However, in
reality the SFDR is not infinite, but it depends on other errors,
quantization, and amount of data used for calculating the
spectrum. How the SNDR and SFDR can be further improved
by estimating the mismatch errors is discussed in [4].

VI. CONCLUSION

With time interleaving, the sample rate of an ADC system
can be increased a lot. However, since the ADC in the time
interleaved array cannot be made exactly identical, mismatch
errors in time, gain and offset will occur in the system. The
mismatch causes distortion in the output signal, which severely
decrease the SFDR.

One way to decrease the impact of the mismatch errors, is to
randomize the order in which the ADCs are used. Additional
ADCs are then used in the interleaved ADC system to enable
two or several ADCs to select from at each sampling instance.
By doing this the mismatch distortion is transformed to a more
noise-like shape. In this paper we have studied the randomly
interleaved ADC system from a probabilistic viewpoint. In
Section IV we have presented a probabilistic model for the
ADC system and derived the spectrum caused by mismatch
errors. This gives a complete theoretical formula to calculate

the output spectrum from a random interleaved ADC system,
given the error parameters. Future work should incorporate
other errors, such as linearity errors. Also effects of fixed
register length for random generators should be investigated.
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