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Analysis of Mismatch Effects in a Randomly
Interleaved A/D Converter System

Jonas Elbornsson, Fredrik Gustafsson, Jan-Erik Eklund

Abstract—Time interleaving can be used to significantly in-
crease the sampling rate of an ADC system. However, the
problem with time interleaving is that the ADCs are not exactly
identical. This means that time, gain and offset mismatch errors
are introduced in the ADC system, which cause non harmonic
distortion in the sampled signal.

One way to decrease the impact of the mismatch errors is to
spread the distortion over a wider frequency range by random-
izing the order in which the ADCs are used in the interleaved
structure. In this paper we analyze how the spectrum is affected  *
by mismatch errors in a randomly interleaved ADC system. We
also discuss how the mismatch errors can be estimated.

Index Terms—analog-digital conversion, sampling methods,
signal sampling .

I. INTRODUCTION
A. Fixed interleaving .

HE requirements for higher sample rates in A/D convert-

ers (ADCs) are ever increasing. To achieve high enough
sample rates, a time interleaved ADC system can be used [1],
[2], see Figure 1. A fixed interleaved ADC system is here

signaly;. The output signals are multiplexed to form one
output signaly.

The clock signal to théth ADC is delayed withT,. This
gives an overall sampling interval af;.

The drawback with this ADC system is that three kinds
of mismatch errors are introduced by the interleaved

structure:

Time errors (static jitter)

The delay time of the clock to the different A/D con-
verters is not equal. This means that the signal will be
periodically but non-uniformly sampled.

Amplitude offset errors

The ground level can be slightly different in the different
A/D converters. This means that there is a constant
amplitude offset in each A/D converter.

Gain error

The gain, from analog input to digital output, can be
different for the different A/D converters.

All these errors distort the sampled signal. Apart from
the errors listed here, there are also random errors in

achieved byAM = 0. The time interleaved ADC systemtime, amplitude and gain, which are not adressed here. Also
other mismatch errors occur, such as linearity mismatch, more

clock U information is available in [3]. With a sinusoidal input, the
| y mismatch errors can be seen in the output spectrum as non
»| ADCg 0 > harmonic distortion. The effects of the mismatch distortion
R are analyz_ed in, e.g., [4]. With inpgt signal frequemxzag_the
/ A ™ 1aDC 2} - gain and time errors cause distortion at the frequencies
N > 1 -
delay[’s ) i
\; o s Ewo, i=1.. M1, (1)
m_» S T apC Yym—1 M Y wherew, is the sampling frequency. The offset errors cause
E > M-t T X ™ distortion at the frequencies
E .
Y 1 .
'Cr: _:ADCM yM - Mu)57 Zzl,...,]\/f—l. (2)
: An example of an output spectrum from an interleaved ADC
L, system with four ADCs with sinusoidal input signal is shown
> ADC s ans_o |[PUHAMAL in Figure 2. This distortion causes problems for instance in a
radio receiver where a weak carrier cannot be distinguished

from the mismatch distortion from a strong carrier. It is
Fig. 1. Random interleaved ADC system wifif times higher sampling therefore important to minimize the impact of the distortion.

rate than in each ADCAM additional ADCs are used to achieve some
randomization, i.e.AM + 1 ADCs are available at each sampling instanceB Random interleaving

One way to decrease the impact of the distortion is to

works as follows: randomize the selection of which ADC that should be used
« The input signaly, is connected to all the ADCs. at each time instance. This means that an ADC is picked
« Each ADC works with a sampling interval 8f 7, where at random at each sampling instance. However, the reason
M is the number of ADCs in the array aril is the for using the interleaved structure is that each A/D converter
desired sampling interval. Thith ADC gives an output needsM times the desired sampling interval to complete the



% _ADC output spectrum . interval, for the complete ADC system, &, = 1. This

O gignal Compglnent' assumption is done to simplify notation and is no restriction.
L X t tort H . .
40 . % Time and gain error distortion We denote byl the number of ADCs required to achieve
30l | the desired sampling rate, where each ADC needs the time

MT, to complete a conversionAM denotes the number

2o of additional ADCs used to randomize the spectrum. The

S 10} {  total number of ADCs in the system af + AM. The

2, * * | time, gain and offset errors are denotad;, AY ; A, i =

= 0,....,M—1,M,...,M—1+AM respectively. The sampling

.;%—10- 1 time instances for each ADC are picked at random and
_oob | denotes the ADC used at tinke The time instances when the

ith ADC is used are denotdd. We use the following notation
for the signals involved:

« u(t) is the analog input signal.

« u[k] is the input signal, sampled without errors.

0 1 2 3 4 5 6 L.
Normlized angular frequency o y;[k;] are the output subsequences from fhe+ AM

ADCs.
Fig. 2. Simulated output spectrum from interleaved ADC system with four 0 0 0
ADCs. The input signal is a single sinusoid. The distortion is caused by yilks] = (1 + Ag,i)“(ki +AL) A+ eqlki]  (3)
mismatch errors. i=0,1,...,M+AM—1.

Heree,[k] is quantization noise. The quantization noise

is assumed to be uniformly distributed and white.

X} is a stochastic variable that picks out which ADC

should be used at time.

« y[k] is the multiplexed output signal from the randomized

' subsequences from all the ADCs. The subsequences are
multiplexed together to form a signal with correct time
ordering. The output signal can be expressed by

sampling. Therefore only one ADC is available for selection at

each sampling instance, i.e., the bandwidth of each ADC is M
times lower than for the overall system. However, to achieve
some randomization one or more extra ADCs can be used [5]
see Figure 1. WithAM additional ADCs there are always

AM + 1 ADCs available to select from at each sampling
instance. An example of the possible ADC selections for

M =4 andAM = 1 is shown in Figure 3. The randomization ylk] = (L4 A) x Ju(k + A x, ) + A x, + eqlk].
4)
We assume throughout this paper thét) is band limited to
2 the Nyquist frequency.
We will next establish a few definitions which will be used
1 later in the paper. A discrete time signa]k| is said to be
quasi-stationary [6] if
3 o
3 }» 4 }» 0 Mo = Jm ;E{u[k]} ©®)
1 5 1 o
R[] = lim — Z E{ulk + nlulk]} ()
2 exist, where the expectation is taken over possible stochastic
3 parts of the signal. Analogously, a continuous time sigr{a)
is quasi-stationary if
1 T
Fig. 3. An example of the possible ADC selection order fdr= 4 and my = lim — / E{u(t)}dt (7)
AM = 1. T—oo T /g

T
Ry(7) = lim 1 / E{u(t + 7)u(t)}dt (8)
spreads the spikes in the spectrum to a more noise-like shape. T=o T Jo
The spectrum for this kind of ADC system will be calculate@xist. A stationary stochastic process is quasi-stationary, with
in detail in Section IV. m,, and R, [n] being the mean value and covariance function
respectively. Assume that[k] is quasi-stationary. Then the

power spectrum ofi[k] is defined as [6]:
Il. NOTATIONS AND DEFINITIONS

o0
In this section we introduce the notation. We assume P, (™) = Z Ry [nle 7™, 9)
throughout the rest of the paper that the overall sampling n=—00



Analogously, we define the power spectrum for continuowghere + denotes convolutionaa ,, (48), andja,, (49), are

time signals as constants that depend on the gain errors. Similady, (51),
o0 . andga,, (52), are constants that depend on the offset errors,
P, (w) = / Ry (r)e " dr. (10) and
We will next define two concepts for measuring the perfor- C(M,AM) = W (14)
mance of an ADC. Assume that the outpit] of an ADC M+ AM
consists of a signal pas{k], a distortion parti[k], and a noise Further,
artelk
parteli Ha, (@) = (15)
ylk] = s[k] + d[k] + e[k]. (11) 1 M+AM—1M+AM—1
Then the SNDR (Signal to Noise and Distortion Ratio) [7]is (37 Ax7)2 > > cos(w(Ari — Ay ),
defined as i=0 j=0
7 E{s?[k]} .
SNDR = 1Olog10<E{d2[kJ]}—I—E{eQ[k‘]} . (12) (I)A(elw) — _C(Mv AM) (16)
The SFDR (Spurious Free Dynamic Range) [7] is defined, , Ce“(M*” + (M —2)e(M=2) ... 4 ciw)
for a sinusoidal input signal as the distance between théF € eiw(M—1) 4 1+1AM (ewM=2) 4 ... 4 1) :

signal component in the spectrum and the strongest distortion

component, measured in dB, see Figure 4. ando, is the quantization noise standard deviation.
If all the mismatch errors are zerdy, = A, = Ay = 0,
SFDR definition we get
50 T T T T
a0l an, =ap, =ap, =0, fa, =1 (17)
o il iy’ W -] and
20t Hp,(w)=1. (18)
= SFDR
= 10f 1 For this case (13) reduces to
g w w
2 OF = o s m e e e D, (") = Dy (") + o7 (19)
510 as expected.
-20t ] In Figure 5®x () is shown forM = 8 and AM =
a0 1,4,16. This plot shows that the oscillations, and peak value,
decrease when the number of additional ADCs is increased.

This is expected since higher value &M means that
there are more ADCs to choose from at each sampling
0 ! Normalized o 4 5 6 instance, and the errors are then more randomized. How-
ormalized angular frequency o = . . .
ever [, ®a(e')dw is constant, independent df}/. When

Fig. 4. The SFDR is defined for a sinusoidal input. SFDR is the diffetA M — oo, @A(eiw) becomes constant.
ence between the signal component and the strongest distortion component,
measured in dB.

10"

IIl. M AIN RESULTS

The main result of this paper is an expression for the
spectrum of the randomly interleaved ADC system. In this .| .
section we summarize these results. A complete derivation of
the results is given in Section IV.

The spectrum of the output signal from a randomly inter-
leaved ADC system is given by (78)

(") = Ba, Pu(e™)Ha, (w) o
roa, [% . (@, HA,J} ()
an,

C(M,AM)

+ ozAO&)A(ei“’) + 276, 0(w) + 02.

+

{éA*éA*(@u(lHAf))} (ei“’) 1072 L L L L =
0 1 2 3 4 5 6
Normalized angular frequency

+ .
5. The mismatch noise spectrubm () for M = 16 and AM =
1

(13)



In Figure 6 an example of a simulated output signal
spectrum from a randomly interleaved ADC wiff = 16,
AM = 1 and sinusoidal input is shown. The theoretical sor
spectrum (13) is also shown in this figure. The time errors
are here randomly generated in the range17,0.175, the
gain errors in the range [-0.1,0.1] and the amplitude errors in 7 1°f
the range [-0.1A,0.1A], where A is the amplitude. We can see
that the simulated spectrum shows good correspondence to thi
theoretical spectrum. Figure 7 shows the output spectrum of a

ADC output spectrum
40 T T

20

Signal power [dB]

Simulated spectrum

1 2 3 4 5 6
Normalized angular frequency

Fig. 7. Simulated output spectrum from a fixed interleaved ADC system
with sinusoidal input and// = 16.

Signal power [dB]

0 1 2 3 4 5 6 is sinusoidal of a very low frequency. The low frequency is
Smoothed simulated spectrum chosen in orpler to minimize the effect of time errors. Here we
40 i i ) i i i see that the interleaving mismatch causes a lot of distortion. In
Figure 9 the randomization is used. Here the distortion peaks
@ 20} 1 are eliminated and we see a spectrum similar to the theoretical
g spectrum shown in Figure 6. In this example the randomization
E . improves the SFDR with abo@0dB.
o
g 20t : 0
(o]
-40
L L . L . X -20
0 1 2 3 4 5 6 30
Theoretical spectrum g
40 : - - 5
§_ -50
g 20t £ 60
- ]
o -70
% 0
o -80
T _
= 20 -90
2
—407 1 ~10% 1 2 3 4 5 6
L L L L L L Normalized angular frequency
0 1 2 3 4 5 6
Normalized angular frequency Fig. 8. Output spectrum from a time interleaved ADC without randomiza-

tion.(real data, not simulated)
Fig. 6. Output signal spectrum from a randomly interleaved ADC system
with sinusoidal input. Heré\/ = 16 and AM = 1. The upper plot shows . o .
the simulated output spectrum. The middle plot shows a smoothed versionln Section IV a complete derivation of the spectrum (13) is

of the simulated spectrum and the lower plot shows the theoretical spectrgmen_ Section IV can be skipped without loss of continuity
13). . . .
(13) and the reader can continue reading from Section V.

fixed interleaved ADC system with/ = 16 for comparison. IV."MISMATCH NOISE SPECTRUM

We can see that the SFDR is much better for a randomly!n this section we will calculate the spectrum for the noise
interleaved ADC system. Measurements have also been d#ieoduced by mismatch errors in a randomly interleaved ADC
to verify the results on real data. The measurements were d&y¥gtem. The spectrum faifk] is given by (9) as

on a 12-bit randomly interleaved ADC withM/ = 16 and 4 o 4

AM = 1. First, the randomization was turned off and oty O, ()= > Ry[ne ™" (20)
ADCs were used. This is shown in Figure 8, where the input n=-—00



Using the above notation we can write the covarianceyfbf
-10 as

Ry[n] = Ra,[n]Rua,[n] + Ra,[n] + Ry[n].  (26)
40 From this, we can calculate the spectrum as

@y(ei‘”) = dp, * ‘i)u,At (ei“’) + ®a, (ei‘”) + @q(ei“). 27)

Signal power [dB]
1
o
o

70 Each expression (22-25) will be evaluated separately in the
-80 following sections. However, to evaluate these expressions we
need a probabilistic model of the ADC system. This will be
investigated next.

-100
0 1 2 3 4 5 6
Normalized angular frequency

Fig. 9. Output spectrum from a randomly interleaved ADC system with. Probabilistic model
M =16 and AM = 1. (real data, not simulated) ) )
We will now study the random interleaved ADC system, as

described in Figure 1, from a probabilistic viewpoint. We have

To calculate the spectrum we need the covariance function g%? notationX;; for the ADC that is used to convert the signal

for y[k]. Assuming that the noise,[k] is independent of the ha\t/l(ran(tahl;t)l\l(umbe(;mg th](\}ADg?\/}‘rong) tOFJ\/[m Théﬂgal_cilla\?ilgn
mismatch errorsA;, A,, A, we get K €{0,..., M+ -1}

of the covariance function in the next subsection we will need
_ 1 X the probability that the same ADC is used at a certain time
Ryln] = lim — > E(ylk + nly[k]) distance,n. We denote this probability by’ (X4, = Xp).

k=1 Since each ADC needs the timé to complete the conversion,
the probability P(Xy+, = Xj) depends on the previous
M —1 time instances. Therefore, to calculate this probability,
we first calculate the joint probability ovel/ — 1 time
instances. To calculate this probability we introduz¥ —!
states, represented by binary sequences of lehgth 1, that

the ADC system can be in at time+ n:

N

1

= lim_ ¥ Z E{ [T+ A x,, Julk+n+A0x, )
k=1

+ AY + eq[k +n]] -

0, Xk+n

(14 AY x u(k+ A x,) + AD x, + eqlk]] }

—E{(l+A2,xk+n)(1+A2,Xk)}‘ 00...0=
L {Xbin # Xiy Xbno1 7 Xbs -y Xgn—(v—2) # Xi}
Jim 03 B{uthsn o Al Julh + a0x,)} 00...1—
b=t {Xkin # Xi, X1 # Xy oo, Xpgn—vi—2) = X&)
+ E{AS,XHH A, } + E{eq[k + n]eq[k]}. (21) 28)
In the last equality we have assumed that = 0 for 11...1=

notational simplicity. However, this is no restriction, since a {(Xin = Xpos X1 = Xi
mean value different from zero just gives an additive constant. " ’ " ’

We have also assumed that the gain errors are independer]'g'glfe a0 denotes# and al denotes—. Since the same ADC
the input signal, which is a reasonable assumption since not be used within a time interva.I af — 1. most of these
samples are picked at random. We introduce the followi ates are illegal ’

notation for the respective parts of the last expression in (21

oy Xipn—(m—2) = Xi }.

Ra,n] = E{(l + A0 x, )1+ AD )} () 2o isilegalifar=a; =1 077 (29)
g 9, X k+n 9, Xk :
Ry, [n] = (23) Removing the illegal states we hadé states remaining
1 N
Jim oSS B{uth bt Al Jule + Al | 10...0
k=1 01...0
Ra,[n] = E{Ag’ Xopn A0, Xk} (24) : (30)

00...1
E{eq[k+n]6q[k]}- (25) 00...0.

Ry[n]



We first assume that > M — 1. The joint probabilities are To summarize, we have a transition probability from time

denoted as follows: differencen — 1 to time differencen of
P = P(10...0 at timek + n) 00 -~ 0 1paw
. 10 --- 0 0
PM =P(01...0 at timek + n)
01...0 pm_|0 1 -~ 0 0 P (36)
: (31) R :
P = P(00...0 at timek + n) 0 0 1 o
and the probability state vector is denoted 4
) The assumption at the derivation of these probabilities was
Plg___o thatn > M — 1. However, we will see that this is true for any
Po(?,)..o n > 0. First considemn = 0. Then we know thai,, = X,
P(n) — : ] (32) ie.,
Pégé 1 !
FPoo’ 0 PO — | |, (37)
These probabilities can be calculated recursively, and we have .
to treat three cases separately here: 0
(n) .
« Py ot o _ For0 <n < M —1, we haveP” , = P{"’ , =0 and
If we step back one time instance to time— 1, we
have the possible stat€®...0 and 00...1. However, 1 fay,=1,a,=0,i#n
o . . P = n = L1 G ' . (398)
the probability of going fron00...1 to 10...0 is zero a1dz...ap—1 0 otherwise
since the time distance between the use of the same ADC
is M —1 here. This leaves the only possible previous statehich is exactly
00...0, and since there are4+ AM ADCs available at
each time instance and the probability for selecting any of P = Aptn=h), (39)
those is equal the probability of going to the state .. 0 . . , ,
is -1 _ e How the probability state vector evolves with the time differ-
I+AM "= ence,n, is summarized by
my _ 1 (n—1) @33 P PO P® ... pin pM+D) . ploo)
10...0 — 00...0 AM
1+ AM 1 _alM 1
1 0 0 TTAM <1+A1M)2 M+AM
(n) . 0 1 0 0 TTAM MIAM
o F%.010..0° ) 0 0 1 0 0 FTATT
Here we have the two possible states . 100...0 and : . )
0...100...1 from the time instance before, of which 0 AM (AAn? ey

only the first state is legal. Since the only possibl 1+AM (AFAM)? M+AM
transition from stat® ... 100...0 one time step ahead is (40)

to the staté) ... 010.... 0 the probability of this transition 14 cajculate the covariance function we need the probability

is one, i.e., P(Xp4n = X3) which is equal toP{{” ,. This probability
n n—1 can be calculated recursively, far > 0, by the state space
Pé.‘.om...o =1 P(...m%...o (34) form
(n) .
« Py o , P = AP™ 1 Bo[n + 1] (41)
In this case we also have two possible states at the (n)
previous time instance)0...0 and00...1. Both these P(Xyin = X)) = CP

states are legal and both transitions are legal. From th% ) i i
state 00...1 there is only one possible transition, tgvhereA is as defined in (36) and
the state00...0, so the probability of this transition is
one. From the stat@0...0, two transitions are possible,
to 00...0 and t010...0. The latter transition has a c=[10 - 0] (42)
probability of ;-x7; according to the discussion in the

first point above. This means that the first transition hadere the driving impulsé[n + 1] is used instead of an initial
a probability of1 — —AM_ — _AM_ e state onP. The state space form only gives the probabilities

LRAM T 1AM for n > 0 but the probability is symmetric in time, so that
) _ _AM - (n1)
Fool o= mpoo...o +1-Fyy 1 (35) P(Xi—pn = Xg) = P(Xpan = Xi). (43)



B. Covariance functions To express the combined time error and signal covariance

In this subsection we will evaluate the different parts (2ZUnction, R a,[n], we have to involve the continuous time
25) of the covariance functiof,[n]. covariance function (8). From the assumption that the input

We start with the gain error covariancéa,[n]. The S|gnal is band I|m|t_ed fco the Nyquist frequency, we have that
probabilities are the same, independent of the ADC numbertu[] = Ru(n). This gives
which gives Run,n] =
Ra,[n] = B{(1 + AY x,, )1+ Af x,)}
1+ MAAM—1 ]\}EHOO_ZE{ k+”+Ath+n) (k+Ath)}
= P(Xiin = Xp) a7 (1+4g,:)°
M+AM ’ = P(Xkn = Xp)Ru(n) + {1 = P(Xp1n = Xi)}  (53)
(1= P(Xpin = Xi)) ! 1 B .
Kt = AR AM — 1)(M + AM) QI A AN > D Ruln+ A —Ayy).
M+AM-1 i=0 i
oD a+A) )+ AD). (44)  This can be rearranged into one part that depends on the
=0 j# probabilistic model (41), and one part that does not
From (41) we can calculate the stationary value by solving 5 ~
= AP, and from this we can calculate Ruafn] = Bal ](R“[;}] -‘1_- i‘;\;f[ 1])
: 5 1 +——— R+ - Rua,n],  (54)
— = = M+ AM M+ AM o
dim P(Xpn = Xi) = OP = o (45) " + +
. ere
This means thatRA,[n] does not converge to zero. We 1
therefore rearrange (44) in one pafla, that converges to R, A n] =
zero and a constant. (M +AM = 1)(M + AM)
B M+AM-—-1
RAH [’I’L} = OéAg RA [n] + ﬂAg, (46) Z Z Ru(n + At,i - At,j)~ (55)
where =0 A
_ 1 Finally, we should calculate the quantization noise part of
Ra[n] = <P(Xk+n = Xy) — m) (47) the covariance function. With sufficiently many quantization
MAAM-1 levels, a uniformly distributed white noise is a good model of
an — 1 Z (14 A )2 the quantization noise [8] for most input signals.
BT MAAM -1\ < : ,
= Ryln] = o3d[nl, (56)
1 M+AM—1 2
TV T AM < ; 1+ Ag’i)> (48) whereag =1L, [9] andgq is the quantization step.
and C. Spectrum
2
B 1 MF N1 A0 49 The spectrum of a product of covariance functions is a
P, = (M + AM)? ; (1+ ) (49)  convolution of the respective spectra [10]. This means that

we can calculate the spectrum gffc] from (26) as
The offset error covarianceRa [n], can be calculated in a

similar way as the gain error covariance function D, () = ZL/ N (ei(W*"/))(I,Ag(ei’Y)d,y
) .
0 . .
Ra,[n] = E{A) KenDox, } DA, () + By(e). (57)
=ap Raln] + 50
s Raln] + fa, (50) We will next evaluate each part of (57) separately, starting
where with @4, (e™). From the definition of spectrum and (46), we
1 M+AM-1 get
OA, = 37 A7 1 Z (AO ‘)2 e’} e’}
° M+ AM -1 ( 4 o ) 5 —iwn —iwn
=0 CIDAg(e ) = A, Z RA[n]e Jr/BAg Z e .
1 M+AM—1 2 n=—oo n=—oo
A? 51 58
e G MY = &
The second term of (58) can be associated with a Dirac
and function [11], if we restrict the domain te € [—n, 7.

(M + AM)?

n=—oo

] M+AM-1 2 00 ‘
Ba, = —< Z A ) . (52) Ba, Z e " =2mfp,0(w), w e [-m, 7] (59)



Next, the first term of (58) will be evaluated. To evaluate thisyhich is the Fourier transform of the covariance function (55).
we need to transform the state space description (41) tof@ calculate this we have to start from the continuous time

transfer function covariance function. If
P(Xin = Xi) = ClqI = A)~' Bqd[n] R(n) = R(n+ A), (69)
¢ '(a - 1$AW)
= A Sn], n >0,  (60) we have the “spectrum” [10] (this is not really a spectrum
q (@ = 7¥an) ~ T7am since R(n) is not a real covariance function, but the sum of

where we get the second equality by evaluating the expressibase “spectra” is a real spectrum, so we use the same notation
C(qI — A)~'B. The probability is symmetric s&(X;.,, = here).

Xi) = P(X;—n = Xk). In the same way we can write the . A

constant part of (47) as output from a system P(w) = P(w)e. (70)

1 1 q Using (70) in (55) we get
= > .
MTAM - MyAMq—1mh 20 (6 -
4 w
Putting (60) and (61) together and eliminating the pole and Dy, (w) = -
zero ing = 1 we get earr (M +AM —1)(M + AM)
Forn >0 Z Z el (B k=R ;) (71)
1 k=0  j#i

Raln] = P(Xpan = Xi)

M+ AM This can be rewritten as
M (M =2)¢M P+ 4 q)
I+AM WA “ (M + AM — 1)(M + AM)
where M4+AM—1M+AM—1
M+AM -1 Z Z cos(w(Agi — A¢ ;) (72)
M,AM) = 63 £t 3/
<M, ) M+ AM (63) i=0 3=0
and 1 The discrete time spectrum can be calculated from the contin-
n(M,AM) = . (64) uous time spectrum using Poisson’s summation formula [10].
M —1+MAM + (AM)? Since we assume that(t) is band limited to the Nyquist
This means that we can calculate the spectrum as frequency we have
éA(eiw) = Z RA[TL}G_MJ" (65) é“ﬂAt (eiw) = éU,At (w)a w e [*71—7’”]' (73)
S Putting (72) and (65) into (68) we get
= —RA[0] + 2Re {Z RA[n]ei“"} = —((M,AM) By, () =
n=0 =
1 ~ . )
iw(M—1) _9)eiw(M=2) 4 .. | giw —————(PaA *[®y, - (1 — Ha,)]) (™) + By (™) Ha, (w),
rope e +n((M1 2)e tore) | g(M,AM)( A [Py ( a)])(e) (") Ha,(w)
eiw(M—1) + T (ezw(M—Q) 4+ 1) (74)

In the last expression the dependence /dnand AM is \yherex denotes convolution, and
omitted forn and( for convenience. To summarize, we have
iw = iw H ' w) = 75
Da, () = an, Ba(®) + 2m0s,0(),  60) > W=o 9
= N . . . 1
where 4 (¢™) is as defined in (65). The offset error covari- > > cos(@(Ari — Ay ).
ance (50) is similar to the gain error covariance (46) except (M + ) i=0 §=0
for the constantsy and 3. This means that we get the offse

error spectrum directly from (66) by replacing the constantsOr small values ofA, Ha,(w) can be approximated by a

econd order Taylor expansion

D, () = an, Pa(e™) 4 276a,0(w). (67)
: . Ha, (w) = (76)
Next, the time error part of the spectrum will be evaluated. ) MAAM—1 M+AM—1
Calculating the spectrum from (54) we get 1— w A — A, )2
. 1 - M_|_AM_1~ - (M—FAM)Q Zz_% z_:o ( t,e t,j) .

Pyn, () = mq’u(@w) + W@u,m (e") - !

1 [ . 4 , ~ , Finally, the quantization noise part of (57) should be eval-
+ 7 DA () (@, () — By, (e7))dr. (68) uated. Here we have assumed a white noise model of the

TJ=m guantization, and the spectrum is therefore constant

We haved (¢’) from (65), and®,,(¢™) is the spectrum of

~ . wy . 2
the input signal. What remains to calculate the®jsa, (), Dy(e™) =0 (77)

q



To summarize, the output spectrum of the randomly intef. Random interleaving

leaved ADC system is With random interleaving we then get the output signal
@y(eiW) _ BAQ(I)u(eiw)HAt (w) spectrum by putting (82) into (78)
- . . A?
sas, [Bax (@))€ By(6) = 2 B ) (80— )+ 6 ) )
aa, = = iw A% = -
+ W l:(I)A *Pp K (P - (11— HAt)):| (e") + 4Ag Ha, (wo) (‘I)A(el(w_wf’)) + @A(el(w+w°)))
Ba {~ } ; A2
+—2—— | Pp* (P - (1 — Hp,))|(e™ Ay _
caram o (e (= a0 ) + 0L AT <1 HAAwo))
+aa,®a(e™) +20a,0(w) + 02, (78)

7 N\

‘iA * i)A(Ei(wiwo)) + ‘i’A * (i)A(Ei(erwO)))
Here the first term is the signal part of the spectrum, and the )
rest is noise and distortion. We can see that even the signal A*fa, (1 — Ha (w0)>
part is somewhat distorted, by multiplication witx, (w). 4C(M,AM) !
However, this is not significant for most applications, since S iw—wo)y L & (i(wtwo)
Ha, (w) =~ 1 for small values ofA,. Pa (€M) 4 Ba (™)

+

2
12 . 92N

Here we can see that the sinusoidal spectrum is in the first
term, while the rest is noise and distortion.

+ an, Pa(e™) + 278, 6(w) + (83)

D. Asymptotic properties
If we in (65) let AM — oo, while M is kept constant we
get

10 w =1 79 . . .
ale™) ) (79) B. Fixed interleaving

randomly from almost all ADCs at every time instance. Puttingyeq interleaved ADC systemA(M = 0) with sinusoidal

this into (78) the output spectrum is input. The covariance function afik] is as in (26)
Dy(e™) = O, Pule™) Ha, () R,[n] = Ra,[n)Rua.[n) + Ra,In] + Ryln]  (84)
+ aﬂgi7r . @, (") duw which gives the spectrum
+ 5%% /_ " Bu(e®)(1 = H(w))dw By (") = Pa, * Pya, (€) + Pa, () + By(e™). (85)
+an, +278a,5(w) + 2. (80) We start withRa  [n], which is now periodic and symmetric
. . . M—-1
pulze o - ) and white ncise, where the varance of e 18171 = 37 30 (1 850014 45 1y oass)
white noise depends on the variance of the gain, offset and Ra, (M + 1 :’RAQ in] (86)

time errors and the quantization.
RAg [—n] = RAQ [n]

V. SINUSOIDAL INPUT The spectrum is then given by [6]
So far we have not assumed anything about the input signal. 9 M/2-1
In this section we will evaluate the spectrum with a sinusoidal ¢, (e) = il Z R (2™ /MY§(w — 21k /M),
input and compare it with the case with no additional ADCs, k=—M/2 !
i.e., AM = 0. We assume, in this section, an input signal (87)
u(t) = Acos(wot). (81) where
M-1
The spectrum of.(t) is then iw —iwn
P *) O (@) = 3 Ra,fnle=m. (88)
27'('142 n=0
b, (w) = (0(w — wo) + d(w + wp)).- (82) ) o
4 The calculations forRa,[n] are similar and we get the

We assume that is chosen such that almost the full range ofovariance function

the ADC is used here. With aiv-bit ADC, the quantization ] M-l
stZep th4eAn2 isy = 2% and the quantization noise variance is Ra,[n] = 7 (A9 :A (i n)mod ar) (89)
— =0

O¢ = 1.2
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and the spectrum the output spectrum for the fixed interleaved ADC system

(I)y(em) =
; o V! 2k /M M/2-1  M/2-1
P, (") = — DL (TN (w — 27k /M), A2 j2mm j2nk
v, 2 Y Y ek )
m=—M/2 k=—M/2
(90)
|:(5 (w — (LU() + 7271—(]?\;_ m)> ) (96)
where [=m,m]
Y N 2r(k +m)
. M-1 . y o M [—7,7]
()= 3 Ra, lnlem. I »
n—0 &m i2wk/M B
+37 k_%:m o} (e )0(w = 2mk/M) + 5

The above expressions are valid for a general input signal.

However, for the time error part we restrict the calculationfSn €xample of the output spectrum from a fixed interleaved
to a sinusoidal input for notational simplicity. The time errofADC system with sinusoidal input and mismatch errors was

covariance function is shown in Figure 2.
Runa,[n] = C. SNDR
1 Nl In this section we will calculate and compare the SNDR for
A% lim — cos(k +n 4+ Ay gtn) cos(k + Ay k) random interleaved ADCs and fixed interleaved ADCs. For the
N—oo N . . .
k=0 randomly interleaved ADC the signal energy is
A2 N-1
=3 J\}im N Z <cos(2wok + won + wo (At in + Ark)) E{SQUC]} =
< k=0 2mABa, B
T H (o) / (6(w — wo) + 8(w + wo))dw
+ cos(won + wo(A¢ ktn — At,k))) -
= 1A%Ba, Ha, (wo). (97)
42 M-l

=5 Z cos(won + wo (At kn — At k))- (92) We get the distortion energy by integrating all but the first
k=0 term of (83)

2 _ 2 2
Calculating the Fourier transform of (92) we get the spectrunE{6 K]} = mA%aa, (M, AM) + 7 A, (1 = Ha, (o))

2w A2
+ 27'1'C(]\47 AM)O&AO + QWﬁAO + m (98)
0 M/2-1 .
Py, () = % Z Yy, (eP2mk/M . If we assume that the mean values of the respective errors are
k=—M/2 zero, we get
21k
6(w— wo + X Ba, =0, Ba, =1 (99)
M/ 1, 1,
o2k OéADZ—UAO, aAg:—O'Ag,
N 5(w N <w0 _ L) )} (93) ¢(M,AM) ¢(M,AM)
M J
(=] where
h 1 M+AM-1
where 2 _ 2
AT aram 2 S
] M-1 ) 1 M+AM-1
p WY __ wn
n= =0
and Further, if we assume that the time errors are sm#ll, (w)
can be approximated by a Taylor expansion
Ral = L3 cosen(Burin— A (©9) Ha)si-wed, -
AT = 77 COS(Wo (At i+n — BAti))-
M — where
1 M+AM-1
Here w|_» -j = w +n - 27 wheren is an integer such that Uif, = VL AM Z Afz (102)
W[—r,x] € [-7,7]. Putting (87), (90) and (93) into (85) we get i=0
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With these assumptions (98) can be simplified to the output spectrum from a random interleaved ADC system,
2 given the error parameters. Future work should incorporate

OA, 2
A2/2 + 3- 22N)'

With the assumption that the mean values of the errors are

E{eQ[/f]} = WAz(azAg + w%ait +

zero and that the time errors are small we get the signal energy

for the fixed interleaved case

[1]
B{s*[k]} = (104)
42 M2
i By, (TR (F) mm A (1 —wiod,) B
—_M/2
and the distortion energy 3l
™ 4 [4]
B} = [ @y (e)do ~ B[R]
2/ 2 B 2 2 oX 2 Bl
~ 1A (O'Ag +wyoa, + A2/02 + W), (105) S

[
which is exactly the same as for the randomly interleaved case.
This means that the SNDR is the same for both the random[g]
interleaved ADC system and the fixed interleaved ADC syste

TA2(1 — w202 [9]
SNDR = 10log,, 1~ St )
TA2(0} | +wioR, + A2/2 + 3ow) (10]
ox 2 (11]
~ —1010g10(02Ag +wioR, + AQA/UQ + m) (106)

This is expected since we cannot change the total amount of
distortion by changing the order in which we select the ADCs.
However, the shape of the distortion is very different between
the fixed interleaved and the randomly interleaved case. If we
study the SFDR we can see that in the randomly interleaved
case there are ndspikes in the output spectrum. This means
that the SFDR is theoretically infinite for an infinitely long
data sequence in the randomly interleaved case. However, in
reality the SFDR is not infinite, but it depends on other errors,
guantization, and amount of data used for calculating the
spectrum. How the SNDR and SFDR can be further improved
by estimating the mismatch errors is discussed in [4].

VI. CONCLUSION

With time interleaving, the sample rate of an ADC system
can be increased a lot. However, since the ADC in the time
interleaved array cannot be made exactly identical, mismatch
errors in time, gain and offset will occur in the system. The
mismatch causes distortion in the output signal, which severely
decrease the SFDR.

One way to decrease the impact of the mismatch errors, is to
randomize the order in which the ADCs are used. Additional
ADCs are then used in the interleaved ADC system to enable
two or several ADCs to select from at each sampling instance.
By doing this the mismatch distortion is transformed to a more
noise-like shape. In this paper we have studied the randomly
interleaved ADC system from a probabilistic viewpoint. In
Section IV we have presented a probabilistic model for the
ADC system and derived the spectrum caused by mismatch
errors. This gives a complete theoretical formula to calculate

(103) other errors, such as linearity errors. Also effects of fixed
register length for random generators should be investigated.
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