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Abstract

In this paper, we present a flexible, efficient design technique for the prototype filter of an
oversampled near perfect reconstruction (NPR) generalized Discrete Fourier Transform (GDFT)
filter bank. Such filter banks have several desirable properties for subband processing systems
which are sensitive to aliasing, such as subband adaptive filters. Our design criteria for the
prototype filter are explicit bounds (derived herein) on the aliased components in the subbands
and the output, the distortion induced by the filter bank, and the imaged subband errors in the
output. It is shown that the design of an optimal prototype filter can be transformed into a
convex optimization problem which can be efficiently solved. Our design technique provides an
efficient and effective tool for exploring many of the inherent trade-offs in the design of the pro-
totype filter, including the trade-off between aliasing in the subbands and the distortion induced
by the filter bank. In our examples we calculate several of these trade-offs and demonstrate that
our method can generate filters with significantly better performance than filters obtained using
current design methods.

∗A condensed version of this report has been accepted, subject to minor revisions, for publication in the IEEE
Transactions on Signal Processing
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Figure 1: An M -channel uniform subband signal processing system.

1 Introduction

Uniform multi-rate filter banks form the basic unit of many multi-rate signal processing systems
in a diverse set of applications that includes audio and image compression, denoising, feature
detection and extraction, and adaptive filtering [1–4]. A typical example of such a system is
illustrated in Figure 1. The standard design techniques for uniform filter banks are based on
(approximating) the perfect reconstruction condition that in the absence of any subband processing,
the output signal is simply a scaled and delayed version of the input [1–4]. It is now well known
that perfect reconstruction can be be (exactly) achieved with finite impulse response (FIR) filters,
in both the critically-sampled (K = M) and oversampled (K < M) arrangements [2–6]. Classes
of efficiently implementable ‘modulated’ filter banks are also available [1–4, 7–10]. However, it
is becoming apparent that perfect reconstruction filter banks do not necessarily provide optimal
performance of the subband signal processing system as a whole; e.g., [11]. Designs based on the
perfect reconstruction condition typically allow considerable aliasing in the subband signals, sm[k],
but structure these aliased components so that in the absence of any subband processing they
are cancelled by the synthesis filter bank. This characteristic may be undesirable if the subband
processing block is sensitive to aliasing in the subband signals, or if the subband processing block
distorts the aliased components in the subband signals in a way that reduces the effectiveness of
alias cancellation. An application which is particularly sensitive to aliasing in the subbands is
subband adaptive filtering [12–17]. The subband processing block of a subband adaptive filtering
system typically consists of a diagonal matrix of adaptive filters, each of which operates on one of
the subband signals, and operates independently of the other adaptive filters.1 The objective of
the subband processing block is, quite naturally, to filter the subband signals. However, by doing
so it may distort the aliased components in the subband signals and hence reduce the effectiveness
of alias cancellation.

For subband adaptive filtering, and other applications with similar characteristics, near perfect
reconstruction (oversampled) filter banks which suppress aliasing in the subbands and ‘imaging’ [2]

1The use of off-diagonal ‘cross’ filters [13] can reduce the sensitivity to aliasing, but may adversely affect the
convergence properties of the adaptive filter, and increases the computational cost of the system.
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of the subband errors in the output, rather than relying on cancellation, offer the potential for
improved performance. In particular, the performance of systems based on the class of oversampled
generalized Discrete Fourier Transform (GDFT) filter banks is quite encouraging [16–22]. These
filter banks are better able to suppress aliasing in the subbands than (uniform) oversampled cosine-
modulated filter banks [18,19,21], and can be efficiently implemented using the GDFT [1]. In this
paper we provide a flexible, efficient design technique for the prototype filter of an oversampled near
perfect reconstruction (NPR) GDFT filter bank. The design criteria are explicit bounds (derived
herein) on the aliased components in the subbands (and the output), the imaged subband error
components in the output, and the distortion induced by the filter bank. These bounds rigorously
amalgamate several intuitively developed design criteria in the current literature [15, 18–22], and
subsume the criteria derived in [23] and [16, Section IV–B]. Our design criteria generate familiar
constraints on the prototype filter: the aliasing criteria result in bounds on the stop-band energy
and the maximum stop-band level, the imaging criterion results in an additional bound on the
transition-band energy, and the distortion criterion results in a measure of the distance between
the prototype filter and a ‘self-orthogonal’ filter.

In their direct form, these constraints generate a non-convex feasible set. Therefore, careful
detection and management of locally optimal solutions may be required in order to obtain a filter
which achieves an objective value sufficiently close to that of a globally optimal prototype.2 The key
step in obtaining our efficient design technique is to show that the design criteria can be (precisely)
transformed into convex functions of the (deterministic) autocorrelation of the prototype filter,
and hence that a (globally) optimal prototype filter can be obtained from the solution of a convex
optimization problem that can be efficiently solved. A feature of our proposed method is that the
semi-infinite constraints generated by the maximum stop-band level constraint and the constraint
that the autocorrelation can be spectrally factorized are transformed into (finite) linear matrix
inequalities.

Our convex formulation not only provides an efficient algorithm for finding an optimal prototype
filter, but by doing so it provides an efficient method for determining the inherent trade-offs between
competing prototype design criteria. Of particular interest is the inherent trade-off between aliasing
in the subbands and the distortion induced by the filter bank. In our examples we calculate several
of these trade-offs and demonstrate that filters designed via our formulation can provide significantly
better performance than filters designed using current methods.

The paper is arranged as follows: In Section 2 we describe the class of GDFT filter banks
and discuss the relationships between our design method and current techniques in greater detail.
In Section 3 we derive our design criteria and in Section 4 we provide the transformation to the
convex design problem. In Section 5 we demonstrate how our method generates filters which achieve
many of the inherent design trade-offs, and in Section 6 we illustrate how this leads to improved

2Rigorous methods (e.g., [24]) are effective but tend to be computationally expensive. Simpler techniques, such
as running a standard local optimization algorithm from multiple starting points, are less expensive but may not be
as effective.
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performance over filters designed by two competing methods.

2 GDFT Filter Banks

The generalized Discrete Fourier Transform (GDFT) filter bank [1] we will consider is of the form
in Figure 1, with the analysis and synthesis filters consisting of exponentially modulated versions
of a single real-valued FIR prototype filter p[n]:

fm[n] = p[n]ej2π(m+m0)(n+n0)/M , (1a)

gm[n] = fm[−n]∗ = p[−n]ej2π(m+m0)(n−n0)/M , (1b)

where m0 and n0 are frequency-shift and phase-shift constants, respectively. Such filter banks can
be efficiently implemented using the GDFT [1]. It is well known that the only critically-sampled
filter banks of the form in (1) with perfect reconstruction (PR) are those generated by a prototype
filter which is a length M rectangular window [25]. Such a prototype filter leads to substantial
aliasing in the subbands. Moreover, critically-sampled near perfect reconstruction (NPR) filter
banks of the form in (1) have approximately the same prototype. In the oversampled case, there
are longer prototypes which generate PR and NPR filter banks of the form in (1), and hence
prototypes which generate much lower aliasing in the subbands can be obtained. The focus of
this paper is on NPR filter banks, because the effectiveness of the alias cancellation in PR filter
banks may be compromised by the subband processing, and because improved alias suppression in
the subbands and image suppression in the output can be achieved by relaxing the PR constraint.
The fact that we employ the same prototype filter in the analysis and synthesis banks means that
our NPR filter banks have polyphase matrices [2] which are nearly paraunitary, and hence have
favourable noise robustness and numerical properties.

One possible approach to the design of oversampled GDFT filter banks is to use the fact that
any prototype filter for an L-times oversampled PR cosine-modulated filter bank is a prototype for
a 2L-times oversampled PR DFT filter bank [9, 10]. The design of prototype filters for NPR and
PR cosine-modulated filter banks is usually expressed as a constrained optimization problem for
the filter coefficients [26, 27], or as an unconstrained optimization problem over some alternative
variables (in some cases called lattice coefficients) which are related to the filter coefficients in
such a way that PR is automatically satisfied [29]. Unfortunately, the constraints in the former
method and the objective in the latter are non-convex functions of the design parameters, and hence
these formulations can be quite awkward to solve. Furthermore, exploiting the relationship with
cosine-modulated filter banks generates a subclass of the (G)DFT filter banks, but not the whole
class [9, 10]. As one might expect, direct formulation of the design of a GDFT prototype (over
the whole available class) also leads to non-convex optimization problems [16, 18, 19, 22]. (Some
simple, but ad-hoc, prototype design methods have also been proposed [15, 20].) The approach
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we outline in this paper involves the transformation3 of the design into a convex optimization
problem in which the autocorrelation coefficients of the prototype are the design variables. This
convex optimization problem can be efficiently solved for the (globally) optimal autocorrelation,
from which an optimal prototype can be obtained via spectral factorization. A number of methods
of spectral factorization are described in [30,35]. The simplicity of autocorrelation-based prototype
design has been recognized before [36], in the context of cosine-modulated filter banks. However,
in [36] the transformation of the design criteria into functions of the autocorrelation sequence
involves approximations, and these approximations manifest themselves in undesirable properties
of the prototype. In contrast, our design transformation is precise, and since our design criteria are
explicit bounds on the aliasing, imaging and distortion energies, we obtain prototype filters with
many desirable properties.

3 Derivation of Design Criteria

In this section we establish design criteria for the prototype filter which enable us to control the
aliased components which appear in the subband signals sm[k], the imaged components which
appear in the output, and the distortion induced by the filter bank. As discussed in the Introduction,
and studied in greater detail in [16, 17], the performance of a GDFT-filter-bank-based subband
adaptive filter is critically dependent on these terms.

If X(z) =
∑

n x[n]z−n denotes the z-transform of the input signal, then the m-th subband
signal in Figure 1 has a z-transform

Sm(z) =
1
K
Fm(z1/K)X(z1/K) +

1
K

K−1∑
k=1

Fm(z1/KW k
K)X(z1/KW k

K), (2)

where WK = e−j2π/K . The first term on the right hand side of (2) represents the desired component
of the subband signal, and the second term represents the aliased components.

The nature of the output of the subband processing system in Figure 1 clearly depends on the
nature of the subband processing block. In subband adaptive filtering applications, the subband
processing block typically consists of a diagonal matrix of adaptive filters. If the adaptive filter
in the mth subband has converged to Hm(z) [and is ‘frozen’ from that point], then the subband

3Similar transformations have also led to convex formulations of some other FIR filter design problems [30–34],
but the design problems considered herein are specially tailored to the design of prototype filters for oversampled
NPR GDFT filter banks.
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outputs are S̃m(z) = Hm(z)Sm(s), and the output of the system in Figure 1 is

Y (z) =
M−1∑
m=0

Gm(z)S̃m(s)

=
1
K

M−1∑
m=0

Gm(z)Hm(zK)Fm(z)X(z) +
1
K

M−1∑
m=0

Gm(z)Hm(zK)
K−1∑
k=1

Fm(zW k
K)X(zW k

K). (3)

If there is no subband processing, then Hm(z) = 1 and (3) simplifies to the standard expression for
the output of a filter bank [1–4]. The transfer function D(z) = (1/K)

∑M−1
m=0 Gm(z)Hm(zK)Fm(z)

in (3) describes the processing of the input signal X(z), while the second term in (3) represents
the aliased components which appear at the output. In the following subsections we will analyze
the aliased components in (2) and (3), the undesired distortion induced by the filter bank, and the
imaged components of errors in S̃m(z) that appear in the output. We will show how the energy of
each term can be bounded by natural properties of the prototype filter. For simplicity, our analysis
is based on a deterministic input signal, x[n], but a complementary analysis based on a stochastic
model for x[n] can also be performed.

3.1 Aliasing in the subbands

Our analysis of the aliased components in the mth subband signal, sm[k], will be expedited by
considering an up-sampled version of sm[k] which has the same sample rate as x[n]. This signal
will be denoted by vm[n], where vm[kK] = sm[k] and vm[kK + i] = 0, i = 1, 2, . . . ,K − 1. Since
up-sampling does not change the energy of the signal, and since the spectrum of vm[n] is periodic
(in frequency) with period 2π/K, the energy of sm[k] can be computed from vm[n] as follows:

Esm =
1
2π

∫ π

−π

∣∣Sm(ejω)
∣∣2 dω =

1
2π

∫
Ω

∣∣Vm(ejω)
∣∣2 dω, (4)

where Ω is an interval of width 2π/K. For our analysis, a convenient interval is

Ωm
M =

{
ω : 2π(m+m0)

M − π
K ≤ ω < 2π(m+m0)

M + π
K

}
, (5)

which is the principal spectral support of the m-th analysis filter in a GDFT filter bank. To simplify
some of our expressions, we define

αm = 2π(m+m0)/M and ψk = 2πk/K. (6)

Using (4) and (2), the energy of the aliased components in the m-th subband signal for a deter-
ministic signal x[n] is

EAm =
1
2π

∫
ω∈Ωm

M

∣∣∣ 1
K

K−1∑
k=1

Fm
(
ej(ω−ψk)

)
X

(
ej(ω−ψk)

)∣∣∣2 dω. (7)
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Setting φ = ω−αm and using the fact (1) that Fm(ejω) = ejαmn0P (ej(ω−αm)), where P (ejω) is the
frequency response of the prototype filter, we have that

EAm =
1
2π

∫ π/K

−π/K

∣∣∣ 1
K

K−1∑
k=1

P
(
ej(φ−ψk)

)
X

(
ej(φ+αm−ψk)

)∣∣∣2 dφ

=
1

2πK2

K−1∑
k,`=1

∫ π/K

−π/K
P (ej(φ−ψk))P ∗(ej(φ−ψ`)

)
X

(
ej(φ+αm−ψk)

)
X∗(ej(φ+αm−ψ`)

)
dφ. (8)

We will now develop bounds for EAm under the assumption that
∑

n

∣∣x[n]
∣∣ is finite. This assumption

ensures that the signal energy Ex =
∑

n

∣∣x[n]
∣∣2 and

UX , max
ω

∣∣X(ejω)
∣∣ (9)

are finite, and also that

JX(µ) , 1
2π

∫ π

−π

∣∣X(ejω)X∗(ej(ω+µ))
∣∣ dω (10)

is finite for all µ. (The term JX(µ) is closely related to the spectral correlation [37] of x[n] for
a frequency separation of µ.) Note that JX(0) = Ex and that JX(−µ) = JX(µ). Since JX(µ) is
finite, the following portion of JX(µ) is also finite:

J̃X(µ1, µ2, α) , 1
2π

∫ π/K+α

−π/K+α

∣∣X(ej(ω−µ1))X∗(ej(ω−µ2))
∣∣ dω (11)

By taking the absolute value of the integrand in (8), extracting the terms dependent on the
prototype filter we obtain the following bound on EAm :

EAm ≤ 1
2πK2

K−1∑
k,`=1

max
φ∈[−π/K,π/K]

∣∣P (ej(φ−ψk))P ∗(ej(φ−ψ`))
∣∣ ∫ π/K+αm

−π/K+αm

∣∣X(ej(λ−ψki))X∗(ej(λ−ψ`))
∣∣ dλ
(12)

=
1
K2

K−1∑
k,`=1

max
φ∈[−π/K,π/K]

∣∣P (ej(φ−ψk))P ∗(ej(φ−ψ`))
∣∣J̃X(ψk, ψ`, αm). (13)

Let UP , maxω
∣∣P (ejω)

∣∣ denote the maximal spectral component of the prototype, and let UP,sb ,
maxω∈[π/K,2π−π/K]

∣∣P (ejω)
∣∣, with UP,sb ≤ UP , denote the maximum sidelobe level of the prototype.

That is, let the prototype filter satisfy a spectral mask of the form shown in Figure 2. Since k, ` ≥ 1
we have that

max
φ∈[−π/K,π/K]

∣∣P (ej(φ−ψk))P ∗(ej(φ−ψ`))
∣∣ ≤ max

φ∈[−π/K,π/K]

∣∣P (ej(φ−ψk))
∣∣ max
φ∈[−π/K,π/K]

∣∣P ∗(ej(φ−ψ`))
∣∣

= U2
P,sb. (14)
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Figure 2: The mask on the magnitude spectrum of the prototype filter.

Hence,

EAm ≤ U2
P,sb

K2

K−1∑
k,`=1

J̃X(ψk, ψ`, αm). (15)

Equation (15) is an explicit bound for the energy of the aliased components in each subband signal
and is a simple multiple of the square of the maximum stop-band level of the prototype filter.

An alternative bound on EAm can be obtained by writing EAm = EAm,a +EAm,b
, where EAm,a

contains the terms in (8) with ` = k, and EAm,b
contains the remaining terms. Using the technique

used to obtain (15), EAm,b
can be bounded as EAm,b

≤ (
U2
P,sb/K

2
) ∑K−1

k=1

∑K−1
`=1, ` 6=k J̃X(ψk, ψ`, αm).

The remaining term is

EAm,a =
1

2πK2

K−1∑
k=1

∫ π/K

−π/K

∣∣P (ej(φ−ψk))X(ej(φ+αm−ψk))
∣∣2 dφ

=
1

2πK2

∫ −π/K

−2π+π/K

∣∣P (ejφ)
∣∣2∣∣X(ej(φ+αm))

∣∣2 dφ
≤ EP,sb

U2
X

K2
, (16)

where the last step is obtained by applying the Hölder inequality [38] and observing that

max
θ∈[−2π+π/K,−π/K]

∣∣X(ej(θ+αm))
∣∣ ≤ UX .

The term EP,sb is the stop-band energy of the filter,

EP,sb =
1
2π

∫ 2π−π/K

π/K

∣∣P (ejθ)
∣∣2 dθ. (17)

Hence, we have the following alternative bound to that in (15),

EAm ≤ EP,sb
U2
X

K2
+
U2
P,sb

K2

K−1∑
k=1

K−1∑
`=1
` 6=k

J̃X(ψk, ψ`, αm), (18)
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which is a linear combination of the stop-band energy and the square of the maximum stop-band
level of the prototype filter.

3.2 Aliasing in the output

The analysis of the aliased components in the output of the subband processing system is more
difficult than that of the aliased components in the subbands, because it depends on the nature of
the subband processing. However, for the adaptive filtering scenario described at the beginning of
Section 3, we can determine the energy of the aliased components in the output by evaluating the
energy of the second term on the right hand side of (3). That is,

EAout =
1
2π

∫ π

−π

∣∣∣ 1
K

M−1∑
m=0

K−1∑
k=1

Gm(ejω)Hm(ejKω)Fm(ej(ω−ψk))X(ej(ω−ψk))
∣∣∣2 dω. (19)

Using techniques akin to those used to derive (18) (the details of which have been omitted for
brevity) we can obtain the following bound for EAout :

EAout ≤
U2
P

K2

(
EP,sb KU

2
X

(∑
m

U2
Hm

)
+ U2

P,sb

K−1∑
k=1

K−1∑
`=1
` 6=k

M−1∑
m=0

M−1∑
n=0
n 6=m

ΓX(m,n, k, `)
)
, (20)

where UHm , maxω
∣∣Hm(ejω)| and

ΓX(m,n, k, `) =
1
2π

∫ π

−π

∣∣Hm(ejKω)H∗
n(e

jKω)X(ej(ω−ψk))X∗(ej(ω−ψ`))
∣∣ dω. (21)

This bound consists of simple functions of the maximum stop-band level, the stop-band energy,
and the maximum component of the spectrum of the prototype filter. If the adaptive filters are
such that UHm ≤ 1, then ΓX(m,n, k, `) ≤ JX(ψk−`), where JX(µ) was defined in (10), and we can
obtain the following simplified bound:

EAout ≤ U2
P

M

K2

(
EP,sb KU

2
X + U2

P,sb (M − 1)
K−1∑
k=1

K−1∑
`=1
` 6=k

JX(ψk−`)
)
. (22)

3.3 Distortion in the output

The third performance measure for the filter bank is the distortion which it induces on the signal. In
order to isolate the (undesirable) distortion induced by the filter bank from the (desired) processing
performed by the subband processing block, we will analyze the distortion in the absence of any
subband processing. That is, with Hm(z) = 1 in (3). If the filter bank is distortion free then(
1/K

) ∑M−1
m=0 Gm(z)Fm(z) = cz−d, where c is a constant and d is an integer [2–4]. In that case,
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the first term in (3) becomes,

1
K

M−1∑
m=0

Gm(z)Fm(z)X(z) = cX(z)z−d.

Without loss of generality in the design criteria for the prototype filter, we can restrict our attention
to the case where the output is neither scaled nor delayed; i.e., where c = 1 and d = 0. In that
case, the energy of the distortion induced by the filter bank is

ED =
1
2π

∫ π

−π

∣∣∣∣ 1
K

M−1∑
m=0

Gm(ejω)Fm(ejω)X(ejω) −X(ejω)
∣∣∣∣
2

dω (23)

=
1
2π

∫ π

−π

∣∣∣∣
( 1
K

M−1∑
m=0

∣∣P (ej(ω−αm))
∣∣2 − 1

)
X(ejω)

∣∣∣∣
2

dω. (24)

This may be bounded in the following way:

ED ≤ U2
X

2π

∫ π

−π

∣∣∣ 1
K

M−1∑
m=0

∣∣P (ej(ω−αm))
∣∣2 − 1

∣∣∣2 dω (25)

= U2
X

∑
n

∣∣∣∣
∑
`

M

K
p[`]p[`− nM ] − δ[n]

∣∣∣∣
2

, (26)

where δ[n] is the Kronecker delta, and we have used Parseval’s Relation. (The derivation of (26)
is analogous to that of (44) in the Appendix for which more details are provided.) If we normalize
the energy of the prototype filter so that

∑
` p[`]

2 = K/M , then

ED ≤ γ2
p

MU2
X

K
, (27)

where
γ2
p =

∑
n
n 6=0

∣∣∣∑
`

p[`]p[`− nM ]
∣∣∣2. (28)

As shown in the Appendix, for a normalized prototype the energy of the distortion in the output
can also be bounded by

ED ≤ γ̃2
p

MEx
K

, (29)

where γ̃p =
∑

n,n 6=0

∑
`

∣∣p[`]p[` − nM ]
∣∣ and, as previously defined, Ex =

∑
n x[n]2 is the energy of

the input signal. In this paper we will focus on the bound on ED in (27), but previous work in a
different application [34] suggests that using the bound in (29) will generate qualitatively similar
results. This is because both γp and γ̃p are measures of the ‘distance’ between p[`] and a filter q[`]
which satisfies

∑
` q[`]q[` − nM ] = K/M δ[n]. (Such q[`] are often said to be self-orthogonal [3].)

The term γp is a two-norm measure, and γ̃p is a one-norm measure.
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3.4 Imaging of subband errors in the output

The remaining performance measure of the filter bank captures the extent to which errors between
the desired and actual outputs of the mth subband adaptive filter corrupt the filter bank output
in other subbands. To be more precise, let Rm(z) denote the (z-transform of the) desired output
of the mth subband adaptive filter. The error signal which drives that adaptive filter is Ẽm(z) =
Rm(z) − S̃m(z); see also Figure 11 in Section 6. Such errors naturally manifest themselves in the
mth subband of the output. However, images of Ẽm(z) also appear outside the mth subband of
the output. If we let Ω̃m

M = {ω : αm − π/M ≤ ω ≤ αm + π/M} denote the mth subband of the
output, then the energy of the imaged components of Ẽm(z) is

EIm =
1
2π

∫
(−π,π]\Ω̃m

M

∣∣Gm(ejω)Ẽm(ejKω)
∣∣2 dω.

If we let UẼm
, maxω |Ẽm(ejω)|, then

EIm ≤
U2
Ẽm

2π

∫ 2π−π/M

π/M

∣∣P (ejφ)
∣∣2 dφ = U2

Ẽm

(
EP,tb + EP,sb

)
,

where EP,tb = (1/π)
∫ π/K
π/M |P (ejω)|2 dω is the energy in the transition band of the prototype filter,

and EP,sb is the stop-band energy.

4 Prototype design

As we have argued in the Introduction, the performance of subband adaptive filtering systems
is sensitive to the error mechanisms discussed in Section 3. Now that the extent of these error
mechanisms for oversampled GDFT filter banks has been bounded by simple functions of the
prototype filter, we can design filters which optimize these bounds, so that optimized subband
signal processing systems can be realized. Using the analysis in Section 3, it is clear that:

1. For a given normalization, small values of the maximum stop-band level, UP,sb, the stop-
band energy, EP,sb, and the maximum spectral component, UP , of the prototype filter will
guarantee that the energy of the aliased components in the subbands and the output are
small.

2. A small value of γp in (28) (and/or γ̃p) will guarantee that the energy of the (amplitude and
phase) distortion in the output is small.

3. Small values of the transition-band energy, EP,tb, and the stop-band energy, EP,sb, will guar-
antee that the energy of imaged subband errors in the output are small.

Although various combinations of some of these criteria have been employed by other authors (on
a somewhat ad-hoc basis), we have shown how they explicitly bound the energy of the aliased
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components in the subbands and the output, the energy of the distortion in the output, and the
energy of the imaged subband errors in the output. Natural design criteria for the prototype can
be obtained by minimizing a (linear) combination of UP,sb, EP,sb, UP , γp and EP,tb, subject to
bounds on their individual values. For example, we might wish to find the length L prototype
filter which minimizes the stop-band energy, subject to fixed bounds on the maximum stop-band
level, the distortion coefficient, the transition-band energy and the maximum spectral component
of the filter, and subject to the filter being normalized. That is, we might seek the solution of the
following optimization problem:

min
p[`]

0≤`≤L−1

1
2π

∫ 2π−π/K

π/K

∣∣P (ejω)
∣∣2 dω (30a)

subject to
∣∣P (ejω)

∣∣ ≤ εsb ∀ω ∈ [π/K, π], (30b)∑
n
n 6=0

∣∣∣∑
`

p[`]p[`−Mn]
∣∣∣2 ≤ ε2γ , (30c)

1
π

∫ π/K

π/M

∣∣P (ejω)
∣∣2 dω ≤ εtbe, (30d)

∣∣P (ejω)
∣∣ ≤ B ∀ω, (30e)∑

`

p[`]2 = K/M, (30f)

where εsb, ε2γ , εtbe and B are fixed constants. Note that in contrast to standard peak-constrained
least-squares filter design [39], our design criteria do not include an explicit lower bound on the
magnitude spectrum in the pass-band of the prototype filter. However, by generalizing Nyquist’s
first criterion for intersymbol-interference-free pulse amplitude modulation, it can be shown that
the distortion and maximum stop-band level constraints [(30c) and (30b), respectively] implicitly
control the pass-band ‘ripple’ [34, Appendix A].

The integrals in (30a) and (30d) can be analytically evaluated, resulting in a convex quadratic
objective and a convex quadratic constraint, respectively, and by squaring both sides of (30b) and
(30e) we obtain two infinite sets of convex quadratic constraints (each expression generates one
constraint for each relevant frequency). These infinite sets of constraints can be approximated by
discretization [40]. (A simple discretization scheme is discussed in (32) below.) Therefore, in the
absence of (30c) the problem in (30) could be efficiently solved, using, for example, second order
cone programming techniques [41]. Unfortunately, the distortion constraint in (30c) is, in general,
a non-convex quadratic function of p[`]. Hence, the problem in (30) is a non-convex optimization
problem which may require careful (and computationally expensive) management of locally optimal
solutions in order to obtain a filter whose performance is sufficiently close to that of a globally
optimal filter. This is important because the objective and the constraints in (30) are competing
criteria. For example, it is well known that there is a trade-off between the maximum stop-band
level and the stop-band energy (e.g., [39]). Achieving a good design involves an exploration of the
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trade-offs between these criteria, followed by the design of a filter which achieves a desired position
on the trade-off surface. The non-convexity of (30) can make it quite awkward to get an accurate
description of the trade-off surface, and hence quite difficult to determine how far a given filter
is from providing an optimal trade-off. Furthermore, it can be quite awkward to determine when
the constraints in (30) conflict so that there is no filter of the given length which satisfies all the
constraints; i.e., reliable detection of infeasibility of (30) can be difficult to achieve.

Given the difficulties involved in solving (30), some authors have developed interesting approxi-
mations to the distortion measure (30c), such as considering only amplitude distortion and ignoring
phase distortion [22]. Others have simplified the design by iteratively linearizing

∑
` p[`]p[`−Mn]

and employing the iterative least squares technique to determine (locally) optimal filters for the
simplified formulation [19]. (The method in [19] will be discussed in more detail in Section 6.)
In contrast, our method solves (30) without approximation or additional constraints, and allows
efficient and accurate calculation of the design trade-offs and filters which achieve them.

The key observation in the development of our design method is that the objective and the
constraints in (30) are all convex functions of the autocorrelation of the filter coefficients,

rp[n] =
∑
`

p[`]p[`− n].

Using the fact that rp[−n] = rp[n] and Rp(ejω) =
∣∣P (ejω)

∣∣2 = rp[0] + 2
∑

n≥1 rp[n] cos(ωn), the
integrals in (30a) and (30d) can be analytically evaluated. They are equal to

∑
n≥0 bs[n]rp[n]

and
∑

n≥0 bt[n]rp[n], respectively, where bs[0] = 1 − 1/K, bs[n] = −2 sin(πn/K)/(πn) for n ≥ 1,
bt[0] = 1/K − 1/M and bt[n] = 2

(
sin(πn/K) − sin(πn/M)

)
/(πn) for n ≥ 1. Therefore, the design

problem in (30) can be transformed into the following optimization problem in rp[n], n ≥ 0:

min
rp[n]

0≤n≤L−1

∑
n≥0

bs[n]rp[n] (31a)

subject to Rp(ejω) ≤ ε2sb ∀ω ∈ [π/K, π], (31b)∑
i≥1

rp[Mi]2 ≤ ε2γ/2, (31c)

∑
n≥0

bt[n]rp[n] ≤ εtbe (31d)

Rp(ejω) ≤ B2 ∀ω, (31e)

rp[0] = K/M, (31f)

Rp(ejω) ≥ 0 ∀ω. (31g)

This change of variables must be handled carefully because not all sequences rp[n] are the auto-
correlation coefficients of some filter. A necessary and sufficient condition for rp[n] to correspond
to the autocorrelation coefficients of a filter is (31g); e.g., [42]. Given a sequence rp[n] which
solves (31), filter coefficients p[`] which generate this autocorrelation can be found using standard
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spectral factorization techniques [30,35].
The objective in (31a) and the constraints in (31b), (31d), (31e), (31f), (31g) are linear, and

hence convex, in rp[n], 0 ≤ n ≤ L − 1, and (31c) is a convex quadratic constraint.4 Therefore,
the trade-offs between these competing prototype design criteria can be efficiently evaluated and
an optimal autocorrelation efficiently found using convex optimization techniques. Furthermore,
infeasibility of (31) can be reliably detected.

Unfortunately, the constraints in (31b), (31e) and (31g) each generate an infinite number of
linear constraints on rp[n], one for each relevant frequency, and it may appear that these could
be awkward to handle in practice. One possible approach is to approximate the constraints by
discretization [40]. A simple scheme for discretizing (31b) is to choose a set of frequencies, π/K ≤
ω1 ≤ ω2 ≤ · · · ≤ ωN ≤ π, often uniformly spaced, and approximate (31b) with N ordinary
inequality constraints

Rp(ejωk) ≤ ε2sb − εN , k = 1, 2, . . . ,N, (32)

where εN is chosen heuristically so that satisfaction of (32) guarantees satisfaction of (31b). In
this way, the design problem can be approximated by a finite dimensional problem with linear and
convex quadratic constraints—a problem which is efficiently solvable, using, for example, second-
order cone programming techniques [41]. As the number of discretization points, N , is increased, εN
can be reduced and hence the quality of the approximation improves. However, this also increases
the number of constraints in the optimization problem, which may result in longer solution times
and may expose the problem to numerical difficulties. A ‘rule of thumb’ is that N ≥ 15L will
provide a sufficiently accurate approximation [30].

An elegant, precise and finite-dimensional alternative to discretizing these linear constraints is
to transform them [31] into linear matrix inequalities (LMIs), which can be efficiently enforced
using semidefinite programming (SDP) techniques [43]. In the case of (31g), we can exploit the
Positive Real Lemma which states (e.g., [31]) that Rp(ejω) ≥ 0,∀ω if and only if there exists a
symmetric positive semidefinite matrix X1 ∈ RL×L such that

L−1−n∑
k=0

[X1]k,k+n = r[n], n = 0, 1, . . . , L− 1, (33)

where [·]ij denotes the (i, j)th element of a matrix. (A symmetric matrix is said to be positive
semidefinite if all its eigenvalues are non-negative. This will be denoted by X1 ≥ 0.) Similarly,
we can use the Bounded Real Lemma (e.g., [31]) to enforce (31e): Rp(ejω) ≤ B2,∀ω if and only if
there exists a symmetric positive semidefinite matrix X2 ∈ RL×L such that

L−1−n∑
k=0

[X2]k,k+n = B2δ[n] − rp[n], n = 0, 1, . . . , L− 1. (34)

4For reasons of numerical accuracy, one may wish to replace (31c) by
�P

i≥1 rp[Mi]2
�1/2 ≤ εγ/

√
2, which is a

(convex) second-order cone constraint [41].
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Equations (33) and (34) are finite sets of linear constraints on the semidefinite matrix Xi, and are
(exactly) equivalent to the infinite set of linear constraints on rp[n] generated by (31g) and (31e),
respectively. Similarly, for the maximum stop-band level constraint, Rp(ejω) ≤ ε2sb, ∀ω ∈ [π/K, π]
if and only if [31] there exist positive semidefinite matrices X3 ∈ RL×L and Z ∈ R(L−1)×(L−1),
such that

(2 − δ[n])xsd[n] + q[n] =
(
ε2sb + r[0]

)
δ[n] − 2rp[n], (35)

where

xsd[n] =
L−1−n∑
k=0

[X3]k,k+n , n = 0, . . . , L− 1, (36)

q[n] =




d0zsd[0] + d1zsd[1] n = 0

2d0zsd[n] + d1zsd[n− 1] + d1zsd[n+ 1] n = 2, . . . , L− 3

2d0zsd[L− 2] + d1zsd[L− 3] n = L− 2

d1zsd[L− 2] n = L− 1,

, (37)

zsd[n] =
L−2−n∑
k=0

[Z]k,k+n , n = 0, . . . , L− 2, (38)

d0 = 2
(
cos(π/K) − cos2(π/K)

)
and d1 = 2

(
cos(π/K) − 1

)
. This LMI approach has the advantage

that the transformation to the finite problem is precise, and hence we avoid having to select N and
εN in (32). The resulting optimization problems can be expressed as

min
rp[n],X1,X2,X3,Z

∑
n≥0

bs[n]rp[n] (39a)

subject to X1 ≥ 0, X2 ≥ 0, X3 ≥ 0, Z ≥ 0, (39b)

(33), (34), (35), (31c), (31d) and (31f). (39c)

The problem in (39) is a (convex) cone programme with a combination of linear, second-order and
semidefinite cones and can be efficiently solved using general purpose solvers for such problems
(e.g., [44]). Furthermore, there are some early indications (e.g., [45]) that the inherent structure in
(39) can be exploited using specially designed algorithms that are substantially more efficient than
general purpose methods.

5 Design Trade-offs

In this section we illustrate how our convex formulation (39) can be used to efficiently evaluate the
trade-offs in prototype filter design for oversampled NPR GDFT filter banks. As discussed in the
Introduction, an important trade-off is that between aliasing in the subbands and the distortion
induced by the filter bank. In Section 3 we showed that the energy of the aliased components in the

15



subbands can be bounded by linear functions of the maximum stop-band level and the stop-band
energy of the filter, and that these two quantities along with the maximum spectral component of
the filter bound the energy of the aliased components at the output. In addition, we showed that
the energy of the distortion error induced by the filter bank can be bounded by a multiple of the
distortion coefficient, γ2

p [see (27)]. Therefore, a natural trade-off to explore is how the minimum
achievable stop-band energy varies with the bound on the distortion coefficient, ε2γ , for a given
bound on the maximum stop-band level (and a fixed bound on the maximum spectral component
and the transition-band energy). This trade-off can be efficiently obtained by solving (39) [or a
discretized version of (31)] for different values of ε2γ and fixed values of ε2sb, B

2 and εtbe. The
resulting trade-off curve generates considerable insight into the design of the prototype filter, as we
illustrate in the following example.

Example 1 Consider a GDFT filter bank with M = 8 subbands and a down-sampling factor of
K = 6. As in Section 3.3, we normalize the prototype to have energy

∑
` p[`]

2 = K/M . To make
an appropriate choice for the upper bound on the maximum spectral component, B, we observe
that if the stop-band suppression is substantial, then most of the filter’s energy lies in the pass
band, ω ∈ [0, π/M ]. Using Parseval’s relation, in order for the prototype to have energy K/M ,
the average value of |P (ejω)|2 over this band must be around K. Since K = 6 in this example,
this is around 7.8 dB. To allow for some variation of the spectrum over the pass-band, we set
B2 = 100.1K; i.e., around 8.8 dB. The trade-off between the minimum achievable stop-band energy
and the bound on the distortion coefficient for certain maximum allowable stop-band levels for
filters of length 48 is given in Figure 3.5 (As discussed below, the constraint on the transition-
band energy was not activated in this example.) These curves represent the inherent trade-off
between the stop-band energy and the distortion coefficient because all points on or above (and
to the right of) the curves can be achieved with a length 48 filter, and no length 48 filter can
achieve any point below (and to the left of) the curves. Each point on these curves was found
by solving (39) using the SeDuMi toolbox [44] for Matlab. This task required between three
and six seconds of CPU time on a 1.6 GHz Pentium IV workstation. The power spectra of three
representative filters are given in Figure 4, along with the corresponding masks. From Figure 3
we can see that when considerable distortion is allowed, the maximum stop-band level constraints
we have chosen are inactive. (The trade-off curves coalesce.) However, as the distortion constraint
is made more stringent, the maximum stop-band level constraints become active. In fact, when
the maximum stop-band level constraint is 34.5 or 36 dB below the maximum spectral component
constraint, there is no length 48 filter which satisfies this constraint and has a vanishingly small
distortion coefficient. (The achievable regions for these constraints, indicated by the dashed and
dash-dot curves respectively, are bounded on the left.) Note, also, that a stop-band energy ‘floor’
is encountered when considerable distortion is allowed. This floor is due to the maximum spectral

5The filter length is chosen to be an integer multiple of M/2 for compatibility with the competing interpolation-
based method described in Section 6. Our design method does not place any constraints on the filter length. Length 49
filters for this example were designed in [46].
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Figure 3: Trade-off between the fraction of the total filter energy that is in the stop band,
EP,sb/(K/M), and the (normalized) bound on the distortion coefficient, ε2γ/(K/M) for length 48
filters with maximum stop-band levels 0 dB (solid), 30 dB (dotted with M), 33 dB (dotted with
�), 34.5 dB (dashed), and 36 dB (dash-dot) below the maximum spectral component constraint.
The symbols ◦, M and � denote the trade-offs achieved by the filters in Figure 4(a), (b) and (c),
respectively. The point denoted by the + is used in Example 4.

component constraint (31e).
Given the proximity of π/M and π/K in this example, compatible constraints on the transition-

band energy have only marginal effects on Figure 3. More precisely, the range of transition-band
energy constraints which are active and result in the optimization problem having a non-empty
feasible set is rather narrow. Hence, the corresponding curves have been omitted from Figure 3
for clarity. (They have also been omitted from the remaining figures in this section.) However, in
Section 6 we will show that constraints on the transition-band energy have a considerable impact
when the filter bank has a downsampling factor of K = 4 rather than K = 6. �
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Figure 4: Power spectra (in decibels) of filters which achieve the stop-band energy versus distortion
coefficient trade-off curve in Figure 3 for a distortion coefficient of 10−6K/M and maximum stop-
band level constraints 0, 30, and 33 dB below the maximum spectral component constraint. For
clarity the spectral mask imposed by the maximum spectral component and maximum stop-band
level constraints is shown by the dashed line. In part (a) we have also indicated the stop-band
edge, 1/(2K), with a dotted line. In parts (b) and (c) this edge is clear from the mask.
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A distinct advantage of the design method developed in this paper is its flexibility. Many other
design trade-offs can be explored using simple modifications to the design problem in (39). For
example, we can determine how the minimum achievable maximum stop-band level varies with the
bound on the distortion coefficient for a given bound on the stop-band energy by simply replacing
the objective in (39) by ε2sb and by introducing the additional linear constraint

∑
n≥0 bs[n]rp[n] ≤

εsbe. The resulting problem remains convex and can be efficiently solved using similar techniques.
This trade-off curve generates further insight into the design of the prototype filter, as we now
show.

Example 2 Consider the GDFT filter bank in Example 1 with the same energy normalization
and maximum spectral component constraint. The trade-off between the minimum achievable
maximum stop-band level and the bound on the distortion coefficient for certain bounds on the
stop-band energy is provided in Figure 5. Again, all points on or above the curves are achievable
with a length 48 filter, and no length 48 filter can achieve any point below them. Each point was
found by solving the above-mentioned modified version of (39) using SeDuMi toolbox [44] and was
obtained in less than eight seconds. The power spectra of three representative filters are given in
Figure 6, from which the differences in the stop-band structure are clear. From Figure 5 it is clear
that when considerable distortion is allowed, the stop-band energy constraints that we have chosen
become inactive. (The trade-off curves coalesce.) However, as the distortion constraint becomes
more stringent, the choice of the bound on the stop-band energy has a considerable impact. In
particular, there is no length 48 filter which has less than 0.02% of its energy in the stop band and
a vanishingly small distortion coefficient. (The achievable regions indicated by the dotted curves
are bounded on the left.) �
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Figure 5: Trade-off between the maximum relative stop-band level (below the maximum spectral
component constraint) and the (normalized) bound on the distortion coefficient, ε2γ/(K/M), for
stop-band energies at most ρK/M . The filters are of length 48 and ρ = 1 (solid), 5 × 10−4

(dashed), 3 × 10−4 (dash-dot), 2 × 10−4 (left/lower dotted curve), 1 × 10−4 (right/upper dotted
curve). The symbols ∗, . and � denote the trade-offs achieved by the filters in Figure 6(a), (b)
and (c), respectively. For reference, the point denoted by the M is achieved by the same filter that
achieves the point denoted by the M in Figure 3. This point will be used in Example 4.
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Figure 6: Power spectra (in decibels) of filters which achieve the maximum stop-band level versus
distortion coefficient trade-off curves in Figure 5 for a distortion coefficient of 10−6K/M and stop-
band energy constraints as indicated. [In (a) the stop-band energy constraint is inactive.] For
clarity the spectral mask is shown by the dashed line.
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Another interesting trade-off which can be efficiently evaluated using our method is that between
the minimum achievable stop-band energy and the maximum allowable stop-band level for a given
bound on the distortion coefficient. Curves of this type are often encountered in peak-constrained
least-squares filter design [39], but usually without the distortion constraint. We can determine this
trade-off without modifying (39). We simply solve (39) for a range of values of ε2sb given fixed values
of ε2γ and B2. (As mentioned in Example 1, the transition-band energy constraint was activated
in this section.) As we illustrate below, these trade-off curves provide additional insight into the
design of the prototype.

Example 3 Once again, we consider the GDFT filter bank from Example 1, with the same en-
ergy normalization and maximum spectral component constraint. The inherent trade-off between
the minimum achievable stop-band energy and the maximum allowable stop-band level for certain
bounds on the distortion coefficient is provided in Figure 7. As is clear from the figure, relatively
mild constraints on the distortion coefficient have a considerable impact on the inherent trade-off.
(The achievable region bounded by the dotted-with-F curve is substantially smaller than that
bounded by the solid-without-symbols curve.) However, as the distortion constraint becomes more
stringent, the impact of changes in this constraint is far lower. (The achievable regions bounded
by the dotted-without-symbols and solid-with-symbols curves are almost the same.) Filters which
achieve the trade-offs indicated by the symbols F, /,� and � in Figure 7 have the same maximum
allowable stop-band level, and hence their gross spectral features will be similar at the scale of Fig-
ure 4. (The power spectrum of the filter which achieves the point denoted by � in Figure 7 is given
in Figure 4(c).) However, these four filters have substantially different distortion coefficients. The
impact of these different distortion coefficients on the pass-band spectra of the filters is illustrated
in Figure 8. The filters with smaller distortion coefficients have substantially flatter pass-band
characteristics. In fact, the relationship between the distortion coefficient and the flatness of the
pass-band response can be made explicit using a recent generalization of Nyquist’s first condition
for intersymbol-interference free pulse transmission [34, Appendix A]. �
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Figure 7: Trade-off between the (normalized) stop-band energy, EP,sb/(K/M), and the maximum
relative stop-band level (below the maximum spectral component constraint) for distortion coeffi-
cients, γ2

p , at most αK/M . The filters are of length 48 and α = 1 (solid, no symbols), 10−2 (dotted
with F), 10−3 (dash-dot), 10−4 (dashed), 10−6 (solid with symbols), 10−8 (dotted, no symbol).
The points denoted by the symbols � and M are achieved by filters which achieve the corresponding
points in Figure 3. Similarly, the points denoted by the . and � are achieved by filters which achieve
the corresponding points in Figure 5. The symbols F, /,� and � denote the trade-offs achieved
by the filters in Figure 8. The point denoted by the × is used in Example 4.
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An auxiliary problem that arises in filter bank design is the choice of the length of the prototype
filter. Typically, for complexity reasons, we would like to use the shortest prototype which satisfies
a given performance level; i.e., satisfies given bounds on the stop-band energy, the maximum stop-
band level, the distortion coefficient, and the transition-band energy. Finding this minimum length
prototype can be quite awkward using the non-convex formulation in (30) because it can be quite
difficult to determine whether or not a given set of constraints generates a non-empty feasible
set. In contrast, infeasibility of our convex formulation [(31) or (39)] can be reliably detected.
Therefore, the shortest length which achieves a given specification can be efficiently determined
using a bisection based search (on the filter length) for the feasibility boundary of a modified version
of (31) [or (39)] in which the objective is removed and the linear constraint

∑
n≥0 bs[n]rp[n] ≤ εsbe

is added. (An analogous procedure in a different application appears in [47].) We illustrate that
procedure in the following example.

Example 4 In Examples 1–3 we examined the design trade-offs for prototype filters of length 48.
Using the above-mentioned bisection search method, we found that the shortest filters which achieve
the trade-off denoted by the + in Figure 3 for maximum stop-band levels 0, 30, 33, 34.5 and 36 dB
below the maximum spectral component constraint are of lengths 35, 39, 43, 44 and 45, respectively.
Similarly, we found that the shortest filters which achieve the trade-off denoted by the M in Figure 5
for stop-band energies at most ρK/M , where ρ = 1, 5× 10−4, 3× 10−4, 2× 10−4, and 1× 10−4 are
44, 47, 49, 50 and 55, respectively. Notice that the last three cases require filters longer than 48.
This is what we would expect, because the M is outside the achievable region for length 48 filters
in these cases. Finally, the shortest filters which achieve the point denoted by the × in Figure 7
for distortion coefficients of at most αK/M , where α = 1, 10−2, 10−3, 10−4, 10−6 and 10−8 are 36,
44, 52, 54, 59, and 62, respectively. �

As we have seen in this section, a feature of our design approach is that it is universal, in the
sense that the trade-off curves can be obtained without knowledge of the application nor the input
signal. However, selection of an appropriate point on the resulting trade-off surface depends on
the relative importance of our three error mechanisms (aliasing in the subbands and the output,
distortion, and imaging in the output) on the application at hand, and on the properties of the
input signal. While the selection of that point will require a certain amount of application-specific
empirical performance evaluation, the bounds derived in Section 3 provide some guidance as to how
the properties of the input signal affect the relative importance of a small stop-band energy, a small
maximum stop-band level, a small distortion coefficient, and a small transition-band energy, For
example, the signal dependent coefficients of the bound on the aliasing in the subbands in (15) and
the bound on the distortion in (27) are quite different. If these two error mechanisms are of equal
importance in a given application, then for a given signal, the relative sizes of the signal dependent
coefficients will guide the designer toward a point on the maximum stop-band level versus distortion
coefficient trade-off curve that is appropriate for that signal.
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6 Performance comparison

Now that we have provided examples of the inherent trade-offs in prototype filter design and have
shown that our design method provides filters which achieve these trade-offs, we will compare
our design method with two competing methods [19, 20]. Both methods are of interest because,
like our method, they generate filter banks with nearly paraunitary polyphase matrices, and they
tackle the distortion induced by the filter bank directly. In contrast, many other methods employ
approximations of the distortion, such as considering only amplitude distortion [22].

The method proposed by Harteneck et al. [19] (see also [16]) involves minimizing a linear
combination of the stop-band energy, EP,sb, the distortion coefficient, γ2

p , and any normalization
error, subject to the prototype filter having linear phase. In the notation of the present paper, this
can be written as

min
p[`]

0≤`≤L−1

λEP,sb + γ2
p +

(∑
` p[`]

2 −K/M
)2 (40a)

subject to P (ejω) having linear phase, (40b)

where λ ≥ 0 is a chosen weighting. For symmetric filters, imposing phase linearity is equivalent to
requiring p[`] = p[L− 1− `]. (The alternative objective µEP,sb + (1−µ)

(
γ2
p + (

∑
` p[`]

2 −K/M)2
)

for some µ ∈ [0, 1] could also be used, but (40a) was chosen by Harteneck et al. [19].) The problem
in (40) is not convex, and hence may require delicate management of local minima. However, given
a linear-phase filter as a ‘starting point’, a local minimum can be found quite efficiently using an
iterative least-squares (ILS) technique [27]. In our implementation we ran the ILS algorithm from
several systematic starting points and several random starting points, and then chose the locally
optimal filter with the lowest objective as our solution. Our systematic starting points included the
length L truncation of the square-root raised cosine filter (e.g., [28, p. 496]) with cut-off frequency
π/M and roll-off parameter (M/K) − 1.

Although our analysis (see Section 3) and some simulations (below) suggest that our standard
formulation [(30), (31) or (39)] is more appropriate for many subband processing applications, we
can obtain a convex problem similar to that in (40) by simply dropping the maximum stop-band
level, transition-band energy, and maximum spectral component constraints [(31b),(31d) and (31e),
respectively] from (31) and lifting the distortion constraint (31c) into the objective:

min
rp[n],τ1,τ2

λ
(∑

n≥0 bs[n]rp[n]
)

+ τ1 + τ2 (41a)

subject to
∑

i≥1 rp[Mi]2 ≤ τ1/2, (rp[0] −K/M)2 ≤ τ2 and Rp(ejω) ≥ 0, ∀ω. (41b)

As discussed in Section 4, the second constraint in (41b) can be handled via discretization or via
transformation into an LMI. Notice, however, that we do not impose the phase linearity constraint
in (41), or in any of our other formulations.
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In contrast to our optimization-based method and that of Harteneck et al. [19], Liu et al. [20]
proposed a simple, but ad-hoc, method based on interpolated filters [48, 49]. To obtain a ‘good’
prototype filter Liu et al. [20] suggest that one can simply interpolate the low-pass filter from an
orthonormal two-channel filter bank by a factor of M/2. There are many well-known constructions
of such filter banks [2–4, 50], and many choices for the interpolation algorithm. As suggested
by Liu et al. [20] we will use Matlab’s interp function to perform the interpolation. (While
that choice does provide ‘good’ interpolation, the interpolation depends on the filter from the
two-channel filter bank.) We will restrict attention to interpolations of low-pass filters from the
standard Daubechies family [50] of orthonormal two-channel filter banks, the symlet family [50], and
those obtained from ‘windowed’ ideal autocorrelations [51,52]. We will choose the minimum phase
spectral factor for the window-based designs, and will denote them by “MSB”. After evaluating
the performance of the standard data analysis windows [53], we found that the ‘Blackmann-Harris’
window [53, p. 65] is an appropriate choice for the application at hand.

In the following example, we demonstrate how our formulations can provide prototype filters
with significantly better design trade-offs than those generated by Harteneck’s method, and those
generated by interpolation.

Example 5 In this example we again consider a filter bank with M = 8, K = 6, and length 48
filters. In Figure 9 we provide (with a dashed curve) the locus of normalized distortion coefficient–
stop-band energy pairs (γ2

p/Ep, EP,sb/Ep), achieved by Harteneck’s method [19] for different values
of λ in (40). Here, Ep =

∑
` p[`]

2 is the energy of the filter. For clarity, we have indicated the
points achieved by Harteneck’s method for specific values of λ by the symbols on the dashed curve in
Figure 9. As one would expect, increasing λ moves the achieved trade-off towards the bottom-right
corner of the figure. Figure 9 also contains the trade-off points achieved by interpolation of filters
from certain standard orthonormal two-channel filter banks, and the inherent trade-off (achieved
by our method) between the stop-band energy and the distortion coefficient (indicated by the solid
curve). To obtain the inherent trade-off we solved an LMI version of the problem:

min
rp[n]

∑
n≥0 bs[n]rp[n], subject to γ2

p ≤ αK/M , rp[0] = K/M and Rp(ejω) ≥ 0, ∀ω, (42)

for a range of values of α. Over the range of distortion coefficients in Figure 9, the solid curve
coincides with the solid curve in Figure 3. (Note that for clarity the scale of Figure 9 is slightly
different from that in Figure 3.) However, when greater distortion is allowed, the solid curve in
Figure 9 does not exhibit the floor effect seen on the right of Figure 3, because (42) does not contain
a constraint on the maximum spectral component. For reference, we have also incorporated the
dotted curves from Figure 3 into Figure 9. These curves correspond to the stop-band energy versus
distortion trade-off subject to bounds on the maximum spectral component and the maximum
relative stop-band level and were obtained by solving (39). The power spectra of representative
filters are provided in Figure 10. In addition, the power spectra of filters which achieve the trade-offs
denoted by the ◦,M and � in Figure 9 are given in Figure 4.

25



10
−8

10
−6

10
−4

10
−2

10
−4

10
−3

10
−2

γ2
p/Ep

E
P
,s

b
/E

p

Figure 9: Trade-offs between the normalized stop-band energy, EP,sb/Ep, and the normalized dis-
tortion coefficient, γ2

p/Ep, for Example 5. Solid: the inherent trade-off [achieved by our method,
(42)]; Dashed: trade-off achieved by Harteneck’s method [19]; Dotted: trade-off achieved by our
method with additional constraints on the maximum spectral component and the maximum rel-
ative stop-band level, (39). Dotted with �, M and N: relative stop-band level is -30 dB; Dotted
with �, � and �: relative stop-band level is -33 dB. (The solid and dotted curves coincide with
the corresponding curves in Figure 3.) The symbols I, J, H, � indicate the trade-offs achieved by
Harteneck’s method with λ = 8.86 × 10−3, 3.91 × 10−2, 1.01, and 2.09, respectively. The symbols
+, × and ∗ denote the trade-offs achieved by interpolating length-12 Daubechies, symlet and MSB
filters, respectively.

It is clear from Figure 9 that by optimizing the prototype and avoiding the phase linearity
constraint, our method provides a significantly better trade-off between stop-band energy and dis-
tortion.6 In particular, the dotted curves in Figure 9 denote the stop-band-energy versus distortion
coefficient trade-off achieved by filters which must also satisfy rather stringent spectral masks. De-
spite the fact that these filters satisfy this additional constraint, for a given distortion coefficient
they (almost always) achieve a lower stop-band energy than the filter designed using Harteneck’s
method. �

6Recall that our method actually achieves the inherent trade-off in the sense that no length 48 filter can achieve
any point below the (solid) curve generated by our method.
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(a) �: Our method
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(b) H: Harteneck’s method [19]
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(c) ×: Interpolated symlet

Figure 10: Power spectra (in decibels) of filters which achieve the stop-band energy versus distortion
coefficient trade-offs indicated by the �, H and × in Figure 9. For clarity the stop-band edge is
indicated by the dotted line.
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Figure 11: The subband adaptive filtering system (enclosed by the dash-dot polygon) used in
Example 6. For clarity only one element of the (diagonal) subband processing block is shown
(in the dotted box). The symbols AFB and SFB denote the analysis and synthesis filter banks,
respectively, c[n] is the impulse response of the unknown system and wm[i; k] is the impulse response
of the adaptive filter in the mth subband at the kth instant.

To verify that the improved trade-offs achieved by our method in Example 5 (see Figure 9) can
generate significant performance gains for the subband signal processing system as a whole, we now
examine the performance of the simple subband adaptive filtering system illustrated in Figure 11.
The purpose of the subband adaptive filter (bounded by the dash-dot polygon in Figure 11) is to
approximate the impulse response of an unknown system, c[n]. This configuration is often called
a ‘system identification’ configuration as is commonly used in acoustic echo cancellation (AEC)
applications [13–17, 20–22]. The subband adaptive filter operates by passing the (known) input
signal, x[n], and noisy measurements, r[n], of the output of the unknown system through separate
analysis filter banks. (The sequence v[n] denotes the noise.) The subband processing block is a
diagonal matrix of standard adaptive filters, each of which operates (independently of the other
filters) on one of the subband signals. (The elements which process the mth subband are enclosed
in the dotted box in Figure 11, where the dashed line indicates that the error signal em[k] drives
the adaptation of wm[i; k].) The filtered subband signals are then reconstructed, and as the filter
converges, y[n] approximates a delayed version of r[n]. Although Figure 11 indicates that adaptive
filtering is performed in every subband, if x[n] and c[n] are real, M is even, and if we insert a
real part operator and a gain of two between the synthesis filter bank and the summer (i.e., if
e[n] = r[n − L + 1] − 2Re(y[n])), then we can perform adaptive filtering on only M/2 of the
subbands and obtain the same performance [16,17,19]. If we choose m0 = 1/2 in (1) we need only
filter subbands 0 ≤ m ≤M/2 − 1. The resulting reduction in computational load has a significant
impact in practice, and we will use this reduced complexity system in the following simulations.

Example 6 In this example we examine the performance of the subband adaptive filter in Figure 11
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equipped with the GDFT filter banks designed in Example 5 (see Figure 9) in a synthetic acoustic
echo cancellation (AEC) environment. Recall that M = 8, K = 6 and L = 48 in Example 5. The
prototype filters designed by Liu’s method are obtained directly, and those designed by Harteneck’s
method are obtained directly from the output of the optimization routine. However, our method
generates the optimal autocorrelation sequence, from which an optimal filter can be obtained using
standard spectral factorization techniques [30, 35]. For simplicity, we only report results for the
minimum phase spectral factor, but other experiments have indicated that in the scenario of this
example, the performance variation over the different spectral factors tends to be small compared
to the performance variations in Table 1. In synthesizing the filter banks from the prototype filter
using (1), we chose m0 = 1/2 so that we need only implement the adaptive filters in subbands
0 ≤ m ≤ 3, and we chose n0 = −(L − 1)/2 = 24, so that if p[n] has linear phase (as it does in
Harteneck’s designs) then all the filters fm[k] in the filter bank also have linear phase.

We evaluate the average performance of the subband adaptive filter over a class of randomly
generated unknown systems c[n] of length 60 whose impulse response coefficients tend to decay
exponentially. More specifically, c[n] ∼ N (0, e−n/10), 0 ≤ n ≤ 59. This class of unknown systems
shares many of the characteristics of the acoustic impulse response encountered in practical AEC
applications. The adaptive filters, wm[i; k], have length 10 and are adapted using the normalized
least-mean square (NLMS) algorithm [54], with step-size coefficient µ̃ = 0.8. The input signal, x[n],
is a (real) zero-mean white Gaussian signal of unit variance, and in order to isolate the performance
of the filter bank, no noise was injected into the measured signal r[n]; i.e., v[n] = 0.

The mean square values of the error, e[n], averaged over 10,000 realizations of the unknown
system and the input signal, for the three prototype filters from Figure 10 (see Example 5) are
provided in Figure 12. It is clear from that figure that the improved stop-band energy versus
distortion trade-off achieved by our design method results in a substantial improvement (around
3.4 dB) in the steady-state error over the interpolation method, and a significant improvement
(around 1.6 dB) over Harteneck’s method. To illustrate the influence of the properties of the
prototype on the performance of the subband adaptive filter in greater detail, we have provided in
Table 1 the steady-state mean square error (again averaged over 10,000 realizations of the unknown
system and the input signal) for systems based on filters which achieve the marked trade-offs in
Figure 9. For convenience we have listed in that table, the (normalized) distortion coefficient, the
relative stop-band level (below the maximum spectral component constraint, B2 = 100.1K), and the
(normalized) stop-band and transition-band energies of each filter. (Note that when γ2

p/Ep = 10−3,
the dotted-with-M curve and the solid curve in Figure 9 coincide and hence generate the same
prototype filters. Therefore, only three filters are listed for this distortion coefficient.) From Table 1
it is clear that for a given distortion coefficient, the lower stop-band and transition-band energies
achieved by our simplest formulation [which has no spectral mask, (42)] result in a significant
improvement in the steady-state error over that achieved by the corresponding filter designed by
Harteneck’s method. Table 1 also shows that our standard formulation [(31) or (39)] with a mild
constraint on the maximum stop-band level results in further performance improvement. However,
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Figure 12: Mean square error (averaged over 10,000 realizations) for the subband adaptive filtering
system in Figure 11 using filter banks designed in Example 5; see also Figure 9. Legend—�: our
method; H: Harteneck’s method; ×: interpolated symlet.

if the maximum stop-band level constraint is too stringent, and the resulting increase in the stop-
band and transition-band energies is too large, then the steady-state error begins to increase. It
can also be observed from Table 1 that as the distortion constraint is relaxed from 10−8Ep, the
performance of the filters from each design method improves, but as this constraint becomes rather
loose, the performance begins to degrade. Finally, Table 1 justifies our earlier decision (in Section 5)
to leave the transition-band energy constraint inactive for this scenario. Even without a specific
transition-band energy constraint, our method achieves a consistently lower transition-band energy
than the competing methods. �
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Table 1: Steady-state mean square error (SS-MSE) for the adaptive filtering system in Example 6
equipped with prototype filters from Example 5 (see Figure 9). Also included are the normalized
distortion coefficient (γ2

p/Ep), the maximum relative stop-band level below B2 = 100.1K (rel. SBL),
and the normalized stop-band (EP,sb/Ep) and transition-band (EP,tb/Ep) energies.

Design Method Symbol γ2
p/Ep, rel. SBL, EP,sb/Ep, EP,tb/Ep SS-MSE,

in Fig. 9 dB ×10−4 ×10−2 dB

Harteneck [19] I 10−8 -20.0 17.4 6.24 -20.02

Ours, no mask, (42) ⊕ 10−8 -24.5 2.54 5.62 -23.05

Ours, (39) � 10−8 -30.0 3.76 5.26 -23.42

Ours, (39) � 10−8 -33.0 7.44 5.02 -22.74

Harteneck [19] J 10−6 -20.6 9.06 6.20 -21.29

Ours, no mask, (42) ◦ 10−6 -24.6 2.40 5.57 -23.11

Ours, (39) M 10−6 -30.0 3.55 5.23 -23.46

Ours, (39) � 10−6 -33.0 6.86 5.00 -22.88

Harteneck [19] H 10−4 -22.01 4.66 5.88 -22.14

Ours, no mask, (42) • 10−4 -26.6 1.09 5.06 -23.75

Ours, (39) N 10−4 -30.0 1.57 4.91 -23.97

Ours, (39) � 10−4 -33.0 2.68 4.78 -23.91

Harteneck [19] � 10−3 -23.6 2.82 5.21 -21.89

Ours, no mask, (42) ⊗ 10−3 -30.0 0.65 4.27 -23.07

Ours, (39) 10−3 -33.0 0.75 4.12 -23.27

Interp. [20], MSB [51,52] ∗ 2.08 × 10−3 -14.3 82.8 8.45 -15.52

Interp. [20], Daubech. [50] + 1.02 × 10−4 -16.9 26.6 6.96 -19.66

Interp. [20], symlet. [50] × 2.14 × 10−5 -15.9 21.0 7.04 -20.53
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Table 2: Prototype filter characteristics and steady-state mean square error (SS-MSE) for the
adaptive filtering system in Example 6 equipped with length 200 prototype filters

Design Method γ2
p/Ep, rel. SBL, EP,sb/Ep, EP,tb/Ep SS-MSE,

dB ×10−2 dB

Interp. [20], MSB [51,52] 1.46 × 10−4 -36.5 5.32 × 10−4 1.73 -26.30

Interp. [20], symlet [50] 1.33 × 10−7 -42.3 1.76 × 10−6 3.58 -27.14

Ours, (39) † 1.51 × 10−9 -114 2.26 × 10−13 2.43 -29.68

Harteneck [19], λ = 6.43‡ 1.51 × 10−9 -88.0 1.88 × 10−11 2.97 -28.63

† The constraints in (39), including that on the transition-band energy, were chosen to be
the values achieved by the interpolated symlet.

‡ The value of λ was chosen so that the same distortion as our method was achieved.

Although the steady-state mean square errors of the systems in Table 1 (see also Figure 12)
might be regarded as being rather high, and although the performance differences are quite subtle in
places, Example 6 has validated the major principles of our design approach. First, the performance
of a GDFT-filter-bank-based subband adaptive filtering system depends on the properties of the
prototype filter that we derived in Section 3, namely, the stop-band energy, the maximum stop-band
level, the distortion coefficient, and the transition-band energy; and second, to obtain optimized
performance from the subband adaptive filter in a particular application, we should explore the
trade-offs between these quantities. Our standard formulation [(31) or (39)] provides an efficient
method for evaluating these trade-offs and hence should be a convenient tool for system designers.

The performance of the system in Example 6 can be significantly improved by using longer
prototype filters or by reducing the downsampling factor K, although both actions will increase
the implementation complexity of the system. To indicate the extent of the potential improvements,
Table 2 provides partial results for the scenario of Example 6 with length 200 filters, and in the
following example we consider the same scenario with length 48 filters and a downsampling factor
of K = 4.

Example 7 We consider the subband adaptive filtering system from Example 6, but with a down-
sampling factor of K = 4. The trade-offs between the (normalized) stop-band energy and distortion
coefficient achieved by the three design methods are illustrated in Figure 13. For our method, we
set the maximum spectral component constraint in the same was as in Example 1, and the maxi-
mum stop-band level constraint was chosen to be that achieved by the interpolated symlet. (This
constraint is inactive in the figure, as suggested by Table 3.) The focus of this example is the
effects of the transition-band energy on the system performance. The solid, dotted and dash-dot
curves in Figure 13 indicate the inherent trade-offs (achieved by our method) under different con-
straints on the transition-band energy. It is clear from Figure 13 that for the filter bank considered
in this example different constraints on the transition-band energy result in significantly different
trade-offs between the stop-band energy and the distortion. In particular, Harteneck’s method [19],
which does not explicitly control the transition-band energy, achieves a trade-off (indicated by the

32



Table 3: Prototype filter characteristics and steady-state mean square error (SS-MSE) for the
adaptive filtering system in Example 7.

Design Method Symbol γ2
p/Ep, rel. SBL, EP,sb/Ep, EP,tb/Ep SS-MSE,

in Fig. 13 dB ×10−2 dB

Interp. [20], MSB [51,52] ∗ 1.38 × 10−3 -26.3 4.13 × 10−3 8.86 -20.92

Interp. [20], Daubech. [50] + 6.77 × 10−5 -32.7 8.31 × 10−4 7.14 -29.36

Interp. [20], symlet [50] × 1.42 × 10−5 -43.6 3.62 × 10−5 7.24 -38.83

Harteneck [19], λ = 99.7 H 1.42 × 10−5 -78.6 5.93 × 10−10 8.86 -38.97

Ours, (39) • 1.42 × 10−5 -85.7 1.27 × 10−10 8.18 -39.58

Ours, (39) � 1.42 × 10−5 -71.7 7.85 × 10−9 7.24 -40.93

Ours, (39) N 1.42 × 10−5 -61.2 7.25 × 10−8 5.79 -39.40

Harteneck [19], λ = 0.642 O 10−8 -66.5 9.19 × 10−9 10.0 -38.76

Ours, (39) ◦ 10−8 -83.2 3.12 × 10−10 8.81 -40.35

Ours, (39) � 10−8 -60.1 9.52 × 10−8 7.24 -42.05

Ours, (39) M 10−8 -58.2 1.18 × 10−6 5.79 -37.44

dashed curve) that is superior to that which can be achieved by any design method which imposes
the transition-band energy constraints that we have chosen. (Recall that our method achieves the
inherent trade-off for the given constraints, indicated by the dotted and dash-dot curves.) How-
ever, as illustrated in Table 3 and Figure 14, filters designed via Harteneck’s method may have
rather large transition-band energies, and hence improved state-state mean square error (SS-MSE)
adaptive filtering performance can be obtained using filters designed by our method. (Since K = 4
in this example, we have used length 15 adaptive filters in the subbands in place of the length 10
adaptive filters in Example 6.) In particular, Table 3 indicates that for the same distortion coef-
ficient as the interpolated symlet, the filter designed by Harteneck’s method (symbol H) performs
only marginally better than the interpolated symlet (symbol ×). The filter designed by our method
without constraints on the transition-band energy (symbol •) performs a little better (a gain of
0.7 dB in the SS-MSE). Constraining the transition-band energy of our filter to be less than or
equal to that of the interpolated symlet improves performance by more than 1.3 dB (for a total
gain over the interpolated symlet and Harteneck’s method of around 2 dB, symbol �), but over
constraining the transition-band energy results in a degradation in performance (symbol N).

If the required normalized distortion coefficient is reduced to 10−8, the same trends apply,
but the performance of our filters improves and their performance advantages increase. (The
performance of Harteneck’s filters actually degrades; symbol O.) In particular, the filter indicated
by the symbol � has a SS-MSE which is around 3.2 dB lower than that achieved by the interpolated
symlet (symbol ×), and 3.3 dB lower than that achieved by the corresponding filter designed by
Harteneck’s method (symbol O). The convergence of the (averaged) output MSE of the subband
adaptive filtering system for these and other representative filters is provided in Figure 14. �
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Figure 13: Trade-offs between the normalized stop-band energy, EP,sb/Ep, and the normalized dis-
tortion coefficient, γ2

p/Ep, for Example 7. Legend—Solid: our method, without a constraint on the
transition-band energy (TBE); Dashed: Harteneck’s method [19]; Other curves: Our method with
the TBE constrained to be less than ρ times that achieved by the interpolated symlet; Dotted:
ρ = 1; Dash-dot: ρ = 0.8. The symbols +,× and ∗ denote the trade-offs achieved by interpolated
length-12 Daubechies, symlet and MSB filters, respectively. The characteristics and SS-MSE adap-
tive filtering performance of the filters which achieve the trade-offs indicated by the symbols are
provided in Table 3.
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Figure 14: Output mean square error (averaged over 1000 realizations) for Example 7. The symbols
correspond to those in Table 3 and Figure 13. The two curves without symbols correspond to
Harteneck’s method (marginally upper curve, symbol O) and the interpolated symlet (marginally
lower curve, symbol ×).
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7 Conclusions

In this paper we have derived explicit bounds on the aliasing in the subbands and the output,
the distortion, and the imaged subband errors of an oversampled near perfect reconstruction (and
near paraunitary) GDFT filter bank. We have shown that the design of a prototype filter which
optimizes these bounds can be formulated as a convex optimization problem from which a globally
optimal filter can be efficiently obtained. The key to developing the convex formulation was to
show that the performance objectives can be written as linear and convex quadratic functions of the
autocorrelation sequence of the filter. We showed that the convex formulation allows efficient and
accurate exploration of the inherent trade-offs in the design, and generates filters with significantly
improved performance over two current techniques. Since the intersection of convex sets is itself
convex, our convex formulation is quite flexible and many other performance objectives can be
incorporated into the design; e.g., a lower bound on the power spectrum of the filter in the pass
band [55] (see also [30, 31, 34, 47]). Furthermore, it appears that our formulation may also be
applicable to the design of windows for oversampled short-term Fourier Transforms which form a
‘snug’ frame [56], and the design of filtered multitone modulation schemes [57].

A Appendix: Derivation of (29)

Given (24),

ED ≤ Ex max
ω

∣∣∣ 1
K

M−1∑
m=0

∣∣P (ej(ω−αm))
∣∣2 − 1

∣∣∣2. (43)

Now,

1
K

M−1∑
m=0

∣∣P (ej(ω−αm))
∣∣2 =

1
K

∑
k,`

p[k]p[`]e−j(ω−m0/M)(k−`)
M−1∑
m=0

ej2πm(k−`)/M

=
M

K

∑
n

(∑
`

p[`]p[`+Mn]
)
e−j(ωM−2πm0)n, (44)

where we have used the Poisson sum formula. Hence,

max
ω

∣∣∣ 1
K

M−1∑
m=0

∣∣P (ej(ω−αm))
∣∣2 − 1

∣∣∣2 ≤ M

K

∣∣∣∣
∑
n

(∑
`

p[`]p[`+Mn]
)
− δ[n]

∣∣∣∣
2

≤ M

K

(∑
n

∣∣∣(∑
`

p[`]p[`+Mn]
)
− δ[n]

∣∣∣
)2

. (45)

Equation (29) then follows from the normalization of the prototype filter,
∑

` p[`]
2 = K/M , and

the definition of γ̃p.
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