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ABSTRACT 

Embedded speech processing systems require stringent 
memory allocation a,nd computing resources. To min- 
imize such resources, a simple, flexible HMM evalua- 
tion technique is presented which employs a state-space 
formulation in conjunction with a simplified likelihood 
measure. The method offers several advantages includ- 
ing the ability to reduce redundant computation and 
memory allocation across models, and a flexible struc- 
ture that can exploit known results concerning state- 
space systems. Although performance is insignificantly 
effected in preliminary experiments, these benefits are 
achieved at the cost of a weaker coupling between the 
two stochastic processes that define the HMM. We aug- 
ment the method with a Markov chain model of the oh- 
servations to compensate for the weaker state coupling. 
Preliminary experiments are used Lo analyze recogni- 
tion performance and as a basis for discussion. 

1. INTRODUCTION 

This work is motivated by the increasing need to con- 
serve computational resources in embedded speech recog- 
nition systems, a problem of increasing commercial and 
research interest (e.g., [ 1 ,  21). 

The hidden Markov model (HMM) is used perva- 
sively in speech-recognition technologies to automati- 
cally model the extraordinary variability of speech acous- 
tics, and complex language structures (e.g. [3 ] ) .  Never- 
theless, it is widely accepted that some of the  statistical 
assumptions a,bout speech that underlie the HMM are 
tenuous. Among these are exponentially distributed 
state durations, and the assumption that elements of 
the observation sequence are locally (within-state) in- 
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dependent.' A current summary of some of the at- 
tempts to compensate for HMM deficiencies is found 
in the paper by Ogawa and Kobayashi [4]. 

The state structure of the HMM is intuitively ap- 
pealing in its apparent relationship t o  the time-varying 
properties of speech, which, in turn, are reflective of 
the dynamic "states" of the speech-production system. 
The Bakis state constraints on the HMM [3] further rec- 
oncile the operation of the mathema,tical model with 
the physical system. In spite of its intuitive appeal, 
there is much empirical evidence that the state struc- 
ture plays a relatively insignificant role in overall per- 
formance of the HMM. This is not surprising since the 
observation sequences decoded by an HMM are ordi- 
narily much longer than the number of states in the 
model. This means t,ha,t most of the self-transition 
loops in the model must have probabilities close to 
unity since there can only he a small number of hetween- 
state transitions among the  large number of total tran- 
sitions. In fact, the self-transition probability of the fi- 
nal (Bakis) state is exactly unity so that a path search 
may remain in the last state indefinitely without state 
transition costs. This leads to the frequently-observed 
phenomenon in which the final state has high prob- 
abilities of generating a vast number of the symbols, 
with earlier states able t o  generate relatively few. In 
such a case, there is apparently enough information 
in the observation string itself to maximize likelihood 
without much recourse t o  the state structure. Clearly, 
an HMM with such a skewed allocation of symbols 
would not accurately represent the sequence of under- 
lying physical states of the speech system. This phe- 
nomenon lends support to both the idea that the state 
structure is relatively insignificant, and to the notion 
that maximum likelihood (ML) optimization (in HMM 
training and decoding) might not be the hest approach 
if the goal is to create a n  HMM whose states accu- 

'The present discussion is centered on the Moore form of the 
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rately model physical states. Several researchers have 
attempted to address the problem of LLunrealistic” dis- 
tributions of observations in order to maximize what- 
ever performance benefits may accrue from the state 
structure (e.g., 15, 6, 71). 

This work reported in this paper draws upon both 
of the ideas raised in the previous pa,ragraph in the de- 
velopment of a resource-efficient HMM evalnation al- 
gorithm. However, the issue of meaningful state dis- 
tributions issue is only briefly mentioned in the final 
discussion due to space limitations (see [Si). Tn this pa- 
per, a simple relaxation of the inherent HMM coupling 
between the state and observation processes yields a 
decoding method which is both computationally cost- 
effective, and allows sharing of memory resources to 
an adjustable degree (Section 2). This method has 
been shown t,o have negligible impact 011 performance 
in spite of the potential for state path violations. To 
help compensate for the weaker sta,te coupling, we aug- 
ment the method with a Markov chain model of the 
observations (Section 3).  Sections 4 and 5 present pre- 
liminary experiments and analysis. 

2. A T I M E - I N V A R I A N T  STATE-SPACE 
F O R M U L A T I O N  O F  THE HMM 

Formulat ion.  The fnnr:ard-backu:ard (F-B) algorithm 
of Baum et al. [9] i s  one of two popular techniques 
for training, and subsequent evaluation of the HMM. 
Lee [8] ha,s shown that the recursive, scalar operations 
comprising the F-B algorithm can be reformulated into 
linear, but time-varying, state-space model (SSM) in 
which the forward or backwa.rd partial sequence prob- 
abilit,y sequences ~ typicdly denoled at( i)  and & ( j )  at 
observat,ion t ~ comprise t~he states of the SSM. Each 
of these SSM states, in turn, is uniquely related to one 
of the states of the HMM. A simplified linear, time- 
invariant SSM governing the HMM dynamics is pro- 
posed by Deller and Snider [9] in which each of the S S M  
states, at time t ,  represents a nonstationary probability 
of generating Ot from one of t,he HMM states. We shall 
refer to this model as the time-invariant approximation 
to the HMM (TIA-HMM). The TIA-HMM; is governed 
by a time-invariant state-space system whose defining 
equations are as follows: Let M denote an HMM with 
N states qi, i  E [l, NI and M discrete observation sym- 
bols s k , k  E [l:M]. At each observation time t ;  we 
define the state probability vector z(t) ,  and the ob- 
servation probability vector, y ( t ) ,  as follows (primed 
vectors indicate the transpose): 

z’(t) ds [ z1(t) Q ( t )  zNv( t )  1 (1) 

Y’(t) ds [ Y l ( t )  ?/Z(t)  ’ ’ _  ?/bl(t) ] (2) 

where, z;(t)  is the probability of being in a t  discrete 
time t given the model M ,  P(q, at t I M ) ,  and Y k ( t )  
is the probability of generating symbol sk at  discrete 
time t given the model M ,  P(sk a t  t 1 M ) .  In these 
terms, the dynamics of the TTA-HMM are as follows: 

z(t + 1) = A z ( t )  + u(t)b( t )  (3) 

Y( t )  = W t )  (4) 

where, A is the N x N state-transition matrix as- 
sociated with the HMM whose ( i , j )  element, a3, = 
P(qj at t + 1 I qi a t  t )  for any t ;  B is the M x N 
observation probability matrix whose ( k ,  j )  element, 
bk j  = P ( S k  I q j ) ;  and u ( 0 )  is some vector such that 
when z(0) is defined as zero, z(1) takes the proper ini- 
tial values, with u(t) arbitrary hut finite for all t # 0, 
and 6 ( t )  is the Kronecker sequence. l/o,=.,(t) = ? / k ( t )  
corresponds to the  kth element of vector y(t). Here sk is 
the symbol realized by Ot. The evaluation score for the 
TIA-HMM with respect to observations 0 = {Ot)t=l 
is given by a simplified likelihood measure 

T 

T T 

C ( 0  I M )  ‘Zf n p ( O t  I M )  = n Y o , ( t ) .  (5) 

The likelihood C(.) inherently assumes independence 
of the elements Ot from the history of the state path, 
but retains pointwise dependency of Ot upon state res- 
idence at  time t. As a result, the observation string 
0 is more weakly linked to the state structure than is 
prescribed by the customary HMM assumptions. 

A s  noted by Mitchell et al. [lo], the TIA- HMM like- 
lihood computation (5) can even include “illegal” paths 
(paths that violate the Bakis constraints). However, 
Lee [SI has analyzed the “illegal path” problem, posing 
analytical arguments for the relative insignificance and 
unlikely occurrence of this phenomenon. Not.ably, the 
strong diagonal dominance of t,he HMM state transition 
ma,trix, characteristic of the Bakis model, mitigates the 
potential problem. 
Resource  Benefits. The TIA-HMM comprises a com- 
pact a,nd flexible structure whose dynamics are readily 
analyzed using decades of results on linear state-space 
systems. In particular, the system can (almost always) 
be transformed to have a diagonal state-transition ma- 
trix, thus reducing the number of operations to de- 
code an observation string of length T from 0 { N 3 / * T }  
(Bakis HMM) [or O { N 2 T }  (ergodic HMM)] to O{iVT}. 
Thc process effectively decouples the computations as- 
sociated with the states, rendering each state com- 
putation is equivalent to a simple single pole filter. 
Further, since the poles for the entire population of 
states across all HMMs in a task are real: positive and 
bounded by unity, with most % 1 ,  many redundant 

t=1 t=l 
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“filter” structures exist both within and across HMMs. 
Tt is possible, therefore, to achieve significant compu- 
tational savings through a process of merging statisti- 
cally similar states across models. Depending on the 
circumstances, it is possible to control the trade-off 
between speech recognition performance and comput- 
ing resource requirements by manipulating the num- 
ber of merged states. In spite of its departure from 
the conventional HMM statistical assumptions, it has 
been shown, in limited experiments [9], to achieve very 
good recognition performance, even when the ability to 
“compress” models is exploited. 

3. ENHANCING THE TIA-HMM 

In the F-B algorithm, one of the main effect,s of the 
“coupling” of the state and observation probability com- 
putations is that, in forwa,rd decoding for example, ob- 
servation Ot may not be attributed t o  state qi, unless 
qi or one of its predecessor states can produce each of 
the observations {OT}:l ’, . Computation of the joint 
probability of states and observation strings provides 
a “veto” mechanism to prevent state sequences that 
cannot legitimately produce the observed string. The 
assumptions of state-conditional dependence only, al- 
lows the F-B algorithm to, in principle, compute the 
joint probability of the entire set of observations up to 
any time t .  Effectively, the F-B includes a check on 
appropriate time ordering of the observations. 

Illegal paths can occur in TTA-HMM decoding be- 
cause the state probabilities a t  time t are computed 
independently of the past observation string {07}:li. 
However, state probabilities are not without effect in 
the TIA-HMM. In fact, the state probabilities tend to 
modulate the conditional observation probabilities in a 
manner that makes it very unlikely (but not impossi- 
ble) for a state with a low probability a t  time t to con- 
tribute to the likelihood of Ot. Thus, to the extent that 
the HMM training produces a viable state model, the 
illegal path problem is alleviated. To the extent that 
illegal paths remain problematic, however, the prob- 
lem can be ascribed, as above, to a lack of attention to 
appropriate ordering of observation sequences. Thus, 
to include additional time-ordering information about 
the observations in a model, we supplement the TTA- 
HMM state equations with a stationary Markov chain 
model of successive observations. This enhancement is 
motivated a similar procedure due to Dai et al. [ l l ] .  

In Dai‘s approach, the conventional F-B computa- 
tions are complemented by a Markov chain in which 
the states are elements of a vector-quantized codebook 
of observation symbols.’ The revised optimization cri- 

‘Dai’s technique and the present work is focused on the dis- 
crete observation model [3], but each is generalizable to acccom- 

terion is to seek a HMM which produces a ML score 
in the conventional F-B HMM sense, in conjunction 
with the likelihood based on the Markovian relation 
between symbols. Similarly to Dai‘s approach? we pose 
a new criterion for TIA-HMM evaluation. ln  the re- 
vised method, the evaluation of a given TIA-HMM is 
based on the likelihood 

T 

L ‘ ( 0  I M , M ’ )  = n P ( O t  

= n [P(Q I M)P(Ot 

in which M’ denotes the Markov 
log-likelihood is therefore 

L(O I M ,  M’) = 

t=1 

T 

t=1 

T 

4. EXPERIMENTAL RESULTS 

To analyze the performance of the augmented TIA- 
HMM evaluation, an isolated-word English alphabet 
recognition test was performed so that t,he results could 
be compared meaningfully with Dai’s. A qualification 
is that the speech corpus i n  Dai’s work is a British 
English corpus to which we did not have access, so 
that the standard TI-46 corpus [12] is employed. The 
selected corpus is composed of 26 utterances of each 
alphabetic character from each of 16 speakers, eight of 
each sex, for a total of 10,816 spoken utterances. 

A speaker-independent recognition task used the 
entire corpus for four males and [our females as train- 
ing data, and the other eight persons’ data for test- 
ing. Consequently, each HMM represents an alphabetic 
character trained by 208 utterances from eight speak- 
ers. An equal set of utterances from the other eight 
speakers was used for testing. 

All data were sampled a t  12.5kHz using 16-bit quan- 
tization. Tenth order mel-cepstral vectors were gener- 
ated as spectral features over 256-point Hamming win- 
dows of the data. The LBG algorithm (e.g. [3]) with 
“center splitting” was used to create a static vector- 
quantized codebook of size 128. This codebook was 
used to quantize the speech utterances for training and 
testing data. In addition, t-smoothing was applied to 
the Markov chain M’. Each of the 26 discrete ut- 
terances was modeled using a five-state Bakis HMM 
with one forward skip allowed. The conventional F-B 

modate continuous observations. 



algorithm was used to obtain HMM parameter matri- 
ces M .  For recognition, the Viterbi algorithm was 
aDdied for PIC? I M )  evaluation. The TIA-HMM 

HMM-TMM 
TIA-HMM 
TIA-HMM-TMM i 

.. \ ,  , 
state model was diagonalized for efficient computation 
of E=, ~ ( 0 , )  [91. 

85.7 % 
80.7 % 
84.4 % 

Recognition results for four different methods are 
shown in Table 1 .  In this table, “TMM” refers to the 
temporal Markov model, Dai’s name for the supplemen- 
tary model M‘ [ll]. 

I Model Form I Recognition Rate I 
r HMM (F-B decoding) I 82.4 % I 

5. DISCUSSION AND CONCLUSIONS 

To the extent that this relatively simple experiment 
may be used to draw general conclusions, several points 
are in evidence. First, the small degradation in per- 
formance between the conventional F-B HMM and the 
TIA-HIMM, suggests that if observations are t o  be treated 
as nominally independent, then the  state condition- 
ing might produce a marginal improvement in certain 
tasks. Given the large number of acoustically confus- 
able alphabet characters and the relatively short dura- 
tion of most utterances in the present task; this re- 
sult is not entirely unexpected. However, in spite of 
its appeal as a “physically meaningful” configuration, 
whether the stronger state conditioning in the F-B case 
is enough to appropriately model dependencies in the 
Observation string is called into question by consider- 
able improvements in both F-B and TIA-HMM cases 
caused by the use of TMM. Apparently local corre- 
lations in the observation strings are more significant 
than the more global nonstationarities in the observa- 
tion probabilities effected by state conditioning. This 
is especially remarkable in light of the fact that the 
the €-smoothed Markov constraint between successive 
observation symbols could conceivably degrade recogni- 
tion performance by effectively allowing “illegal paths,“ 
even in the F-B case. 

All of these remarks are contingent upon the F- 
B training having produced models whose states are 
“meaningful” in terms of truly representing nontrivial 

3This impliez that the probabilities of inappropriate states 
might not have the opportunity to sufficiently damp out to prc- 
vent illegal paths in the TIA-HMM evaluation. 

clusters of statistically stationary observations, rather 
than simply representative of a structure that satisfies 
the ML optimization criterion. In the extreme case, for 
example, in which all but a few observations sk are gen- 
erated exclusively by the final state, then the Markov 
chain model M’ would be of much greater significance 
than the “hidden” structure of the model. In this sense, 
the training paradigm suggested by Lee [8] could have 
a significant impact on these results. This issue will be 
pursued in future work. 

Finally, the TMM augmentation renders the TIA- 
HMM a very competitive alternative to the conven- 
tional HMM. The  benefits of the TIA-HMM, which 
have been discussed in 191 and further researched in [8], 
could be significant in many applications. 
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