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ABSTRACT

Multi-stream processing provides a successful approaehhance
the generalization capability of a recognizer and can, owae
be combined with other robust techniques, such as spectbal s
traction and/or robust features, HMM/MLP hybrid systemsd a
others. The question usually arises at which point the rdiffe
streams are to be recombined, i.e. at the feature or at th@pro
bility level. Feature and probability combination are ofseen as
alternative approaches. We show here how a sensitive caidnin
of both renders this decision obsolete and improves retiogras
compared to each approach carried out on its own.

The study has been carried out on the digits and numbers par
of the Portuguese SPEECHDAT corpus. This corpus includes a«g || combination”

large number of speakers and channel conditions and is,ilalis
suited to test the described multi-stream systems undéstiea
conditions. Results are presented for both context-inuf#gat and
context-dependent models used in an HMM/MLP hybrid system.

1. INTRODUCTION

Many speech recognizers are applied over the telephonatide
employ digit and number recognition. This includes sucHiapp
tions as credit card and account number validation, auteadndit
aling, user identification via PIN codes, and others. In¢hasks,
the speech recognizer is confronted not only with a largebrarm
of speakers with different characteristics but also withidewa-
riety of transmission channels which alter the speech bigitse
SPEECHDAT database was developed with the goal to provile th
research community (and industry) with a realistic speespus
to test and develop speech recognition tools which can atdou
such real-world applications.

In these environments, state-of-the-art recognizersh ssc
HMM/MLP (Hidden Markov Model/Multi-Layer Perceptron) hy-
brid systems, together with robust features, e.g. RASTA BCI@
features possibly with spectral subtraction or other gaut fil-
ters, usually provide some robustness. A successful agiprima
further enhance the performance of such a speech recodnizer
unseen conditions is multi-stream (MS) processing.

In MS processing several information streams are processed
parallel up to a certain point where the information is reborad
to obtain one final decision. It was found that the more divé¢ne
streams are, the better they complement each other andgtherhi

the gain in recognition rate usually is. The different stneacan
consist of (i) different modalities (e.g. audio and videdada(ii)
different acoustic models (AMs), training data and/or alhms,
or (iii) different feature streams.

In case when the diversity of the streams is already obtained
before the AMs, recombination can be carried out at two ruiti
levels: the feature level (i.e. before the AMs) [1, 2], and gnob-
ability level (i.e. after the AMs and before or during deauay)i
[3, 4, 5]. These approaches are usually interpreted asnaiter
tives, hypothesizing that correlated features should bdeted
jointly, whereas uncorrelated features should be modejedi®
joint acoustic models. This however, could not be sustalmed

xperiments [2]. More recently, the “All Combination” (AQ9r
) approach was proposed which is a mathe-
matically correct extension of standard probability comalbion
and actually combines both methods [3, 6]. Higher recogmiti
rates are usually achieved through AC processing than vttibre
method, feature or probability combination, on its own.

In this article, we investigate the MS AC approach on the Por-
tuguese SPEECHDAT database. Our streams stem from three dif
ferent, state-of-the-art acoustic feature extractorsiwhre known
to be powerful in rather diverse conditions and thus complem
each other well. In the next section, we give the mathematica
background for the probability combination approachestvinere
tested. In Section 3, the SPEECHDAT database and the exper-
iments are described for context-independent (ClI) andesont
dependent (CD) models. In the last section we summarize the
results and describe our ideas for future work.

2. PROBABILITY COMBINATION STRATEGIES

Non-linear recombination by product rule is one of the masely
used combination strategies for probability estimatesis Tile
assumes both equal class priét&y,) and independence between
all :z:i) conditioned ong;, (i.e. p(zi, zj|qr) = p(zilgr)p(z;lqr)

Y i, 7).
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where S is the number of individual streams ad®)(qx|z) the
probability estimate for speech unif (k = 1,..., K) from ex-



pertz which is trained on input data. © is a normalization con-
stant, independent @k, such thaty ", P(qx|z)=1.
The (standard) sum rule for posteriors is written as foltows
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where S and P;(gx|z) as above. P(b;|z) is a weighting term
which depends on both the expérand the acoustic vecta.
The weights can be calculated e.g. offline on the training st
Least-Mean Square Error estimation or online during dewpdia
Signal-To-Noise Ratio estimation [3, 6].

In the above approach, (2) and (3) are not accurate if thegven
b; are not mutually exclusive and exhaustive, which is usuhity
case due to the definition éf [7]. It can therefore happen that the
best combination of streams is simply ignored. The AC apgrpa
on the contrary, considers all possible combinations ebstis by
defining a set of exhaustive and mutually exclusive evet$ig-
ure 1). As itis not known which combination of streams corsgsi
the best data features for the current frame, it has to bgratied
over all2% = B possible combinations; (j = 1,...,B), with S
the number of individual feature streams. This amountseodt
Sum rule:

P(gx|z) P;(qx|bj, =) P(bj|z) 4)

||Mm ”M“

Pj(qx|z)P(bj|z) (5)

with P; (g |z) the probablllty estimate for phonemg from expert
j trained on its stream (combination), and P(b;|x) the weight
for expertj given acoustic vectat.
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Fig. 1. lllustration of "All Combination” processing in the muiti
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We will see in the experiments how the AC approach leads to
consistently better performance than either pure feameatena-
tion or the simple probability combination strategies ogirtlown.

So far, AC processing has only been applied to context-inde-

pendent models [3, 6]. We will discuss in the next paragréeh t
advantages of context-dependent processing for whichtibeea
combination strategies also apply without any changes.

Context-Dependent Modeling In standard HMM/GMMs (Gaus-

sian Mixture Models) the use of context-dependent modglsfsi
icantly improves recognition accuracy due to the explictide-
ling of coarticulation effects producing sharper probipidlensity

functions for the different phone classes. We work in thenfra
work of HMM/MLP hybrid systems where the posterior proba-
bilities at the output of the MLP are, after division by theops,
used as scaled likelihoods in the HMM for decoding. In hybrid
systems, usually only one state is used per phone modehteget
with duration-modeling. For this reason, the modeling tépa
ties of the hybrid systems are limited, especially as faredaitd
modeling of the phone changes is concerned. To circumvént th
problem, these systems use a context window at the inputeof th
MLP. In order to combine the advantages of discriminatieéntr
ing with the advantages of context-dependent modeling we-in
duce triphone models to our hybrid systems. The use of tripho
implies enlarging the output layer of the MLP. More (speech)u
classes at the output of the MLP renders the MLP more difftoult
train and increases the need for more training data. Forititsd
and numbers task, this is still feasible as the number of roccu
triphones is limited and the size of the MLP’s output layelt mot
increase too much.

3. EXPERIMENTS

The Portuguese SPEECHDAT database has been developed withi
the SPEECHDAT projettto address current and future require-
ments in the field of telecommunication, spoken languagb-tec
nology and research. It has been recorded in two phasestwer t
public telephone network involving a large set of speakexsord-

ing conditions and tasks. In the first phase (SPEECHDAT &)ygth
were 1000 speakers. Thirteen different noise cases wereathan
marked (start and end point) on the speech data. In the second
phase (SPEECHDAT 2), 4000 speakers were involved. The noise
cases were merged into 4 remaining classes and roughly charke
in every utterance. In this article we concentrate on thésdand
numbers part of the database, more precisely the categdties
C1-4 and 11 described in Table 1.

The training and cross-validation set comprises 9981 &lean
utterances (13h 24min of speech), roughly equally distedbun
terms of utterances over the six numbers categories as simown
the left table of Figure 2. The test set consists of 929 clg¢an u
terances (1h 14min of speech), distributed as shown in td ri
table of Figure 2. The sets correspond to the defined panitigo
of the speakers into training and test set as given on the SPEE
DAT CDs, so that each speaker was only used in either of tise set

An alignment was created with Gaussian models, using flat
start, and then refined with the MLPs, using the clean utterspf
the better labeled first part of the corpus (SPEECHDAT 1).s€he
MLPs were then used to align the clean utterances of the decon
part (SPEECHDAT 2). The whole set of training utterances was
then re-aligned several times.

In this work we use 3 feature streams comprising 13 PLP cep-
stra, 13 RASTA(-PLP) cepstra and 28 Modulation Spectrogram
(MSG) features, extracted on windows of 20ms with a fram# shi
of 10ms. The first two streams were augmented by their dedta fe
tures.

The MLP uses 7 frames of context information except for the
MSG features where 9 frames are used. The hidden layer t®nsis

Ihttp: // www. speechdat . org
2Clean” here signifies no speaker or background noise thougtter-

ate noise introduced by the telephone network is a naturedemuence of
the recording conditions.



Class Class contents Example
ID To read As has been read
B1 10 isolated digits 0965423871 "zero nove seis cinco quais trés oito sete um”
C1 Sheet number 33546 "trés trés cinco quatro seis”
Cc2 Telephone number 090981696 "zero noventa nove oito Lsmsee seis”
C3 Credit card number 4585 4567 6189 6565 "quatro mil quitdeea oitenta e cinco quatro mil ..
C4 PIN code 159.160 "cento e cinquenta e nove mil cento ers@sdse
11 1 isolated digit 6 "seis”

Table 1. Illustration of the digits and numbers classes of the SPHBAT database. As can be seen in some of the examples, sone of t

digits have actually been read as connected numbers (exgefita”).

B1: B1: 110

1461
C1: 1606 C1: 144
C2: 1770 C2: 179
C3: 1621 C3: 180
C4: 1566 C4: 117
11: 1957 11: 199

Fig. 2. Distribution of the utterances in the training and cross-
validation set (left) and in the test set (right) over thedasses of
the SPEECHDAT database used here.

of 2000 nodes (2770 for MSG), and the number of output nodes
corresponds to the number of speech units in the digits and nu
bers part of the SPEECHDAT corpus.

The vocabulary consists of 51 words for which an internal
transcription was available. The language model (LM) wasipe
on the training utterances, using the CMU-Cambridge Laggua
Modeling Toolkit V2.05. The Good-Turing method was used to
estimate the closed-vocabulary, back-off bigram LM whicm-c
tains 2601 bigrams. Missing bigram combinations which dit n
occur in the training data were manually added. The pertylexi
the LM on the test set is 10.73.

The hybrid systems employing context-independent (mono-

models and [6.04,7.16] for the CD models.

| || CImodels| CD models

RASTA 8.0 8.4
PLP 7.2 6.6
MSG 7.3 6.8

Table 2. %WERSs of each of the three feature streams as employed
in a standard (one-stream) recognizer.

3.1. Feature Concatenation

We first investigate MS feature concatenation, for whichheac
feature stream was concatenated to each other featurenstad

an acoustic model was trained on the combined stream. Tdds le
to an increased input layer size, but the hidden and outpger la
sizes can be kept the same. Concatenation of the 3 streadss lea
to a rather large feature stream which needs to be proceShed.
might lead to a problem in standard Gaussian modeling, asere
ing the number of the necessary Gaussians and producingea lar
number of HMM parameters. In a hybrid system, we can afford to
have a large input feature vector as the modeling is cartiet®-
tweenthe input and the output layer of the MLP, so that the latter,
which is responsible for the number of mixture weights pertMiM

phone) models use 32 MLP output nodes (one for silence) s onl Stateé, does not change in size.
31 monophones occur in the numbers part of the corpus. The re-
maining 7 nodes were not used. Each monophone model uses one

|| Clmodels| CD models

HMM state,. which is repeated three t.o six times, depending on RASTA-PLP 55 63
the respective monophone. For the triphone-based alignmen

i ) . PLP-MSG 5.1 5.5
substituted in the monophone-based alignment each monepho
label by a new label which depended on both the monophone’s RASTA-MSG 5.1 6.1
left and right context. This gave us a set of 151 triphoneltabe RASTA-PLP-MSG 4.7 6.2

(word-internal only). This alignment was then used to trtie
context-dependent MLPs which have 151 output nodes. The tri Table 3. %WERs for the MS systems employing feature combi-
phone HMM models use 3 states for duration modeling. Only the nation.
silence model uses just one state without duration modeling
The results of the three one-stream systems are given in Ta-

ble 2. In order to evaluate whether a difference in Word Braie
(WER) is significant, we carried out a significance test atrfico
dence level of 97.5%. A result is therefore significantlyfetiént
from the best result achieved (that is, for CI models: 7.2,GD
models: 6.6) if it lies outside the interval of [6.61,7.78} the ClI

The results are given in Table 3. Although the RASTA feature
stream when used by itself is significantly worse than theratlio
streams (cf. Table 2), after feature combination each denated
feature stream leads to a significantly improved recogmitate.

In the case of the Cl models, best results were achieved when a



three streams were concatenated. For the CD models, it was th
combined PLP-MSG stream which gave the best results.

3.2. Probability Combination

In MS probability combination we investigated combinaticac-
cording to Equations (1) (product rule), (3) (standard sufa)r
and (5) (AC ™ rule). We use equal weights (for each class and
expert) in all experiments. For AC processing, also the Mit&®
feature combination were employed as defined by Equation (5)

| || CImodels| CD models]

RASTA«PLP PRODUCT 7.3 6.8
RASTA+PLP SUM 6.1 5.8
RASTA-PLP AC SUm 5.2 5.7
PLP«MSG PRODUCT 7.8 6.7
PLP+MSG SUM 5.9 5.6
PLP-MSG AC M 5.0 5.6
RASTA*MSG PRODUCT 7.5 6.5
RASTA+MSG SUM 6.2 6.4
RASTA-MSG AC SUm 51 5.9
RASTAxPLP«MSG PROD. 7.5 8.2
RASTA+PLP+MSG SUM 5.7 5.7
RASTA-PLP-MSG AC $IM 4.5 5.7

Table 4. %WERSs of the MS systems employing probability com-
bination with two and three different feature streams.

In Table 4, we can see the clear tendency that the (standard)

sum rule always outperforms the product rule (for both thar@l
the CD models). The sum rule achieved significantly improved
results as compared to the single stream results, thougiulit c
not improve over the respective feature concatenation wikery
the context-independent models. For the context-deperndee,
the sum rule outperformed feature combination in half oftses
(i.e. for RASTA+PLP and RASTA+PLP+MSG).

With AC processing we are able to further enhance perfor-
mance achieving the best results for each respective cetidain
of streams, when employing Cl models. With CD modeling there
are two cases (PLP-MSG and RASTA-PLP-MSG) where the AC
SuM is not better than the standard sum or even feature combi-
nation due to the good results of the combined PLP-MSG featur
stream.

Significantly lowest WER (4.5) was achieved with AC MS
processing employing all three feature streams and ClI rimadel

4. CONCLUSION

With the different characteristics of the PLP and the MSGuea
streams, these streams are especially well suited for M&pse
ing. The RASTA features differ from the PLP features onlyhia t
additional RASTA-filter but this difference is still strorepough
(even on our telephone-recorded but otherwise clean nttesj
to be exploited in MS processing to improve recognition qerf
mance. Feature concatenation of all three streams led t igoo
sults which could be further improved when using AC prohgbil
combination. With the AC 8m we achieved the best results for
each combination of features.

Context-dependent modeling using word-internal triptsane
proved results mainly of the one-stream systems and in atdnd
probability combination, due to better modeling capaietitof the
context-dependent HMMs. Feature concatenation in thetersg
resulted in smaller improvements. For this reason it wadérao
achieve a significant gain from MS AC processing. Cross-wird
phones might be needed additionally to the word-interfiathémes
to enhance improvement.

A disadvantage of using CD models can be reduced gener-
alization ability and lack of robustness due to sparsityraint
ing data. To circumvent this problem, HMM based systemsitrai
models at many different levels of context, such as monoghioin
phone and triphone models [8], which are then linearly simeait
Such an approach is not possible in HMM/MLP hybrid systems.
Instead, we plan on using the MS approach as a way to “back-off
our context-dependent hybrid system with a context-inddpet
system.
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