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ABSTRACT

The objective of voice conversion methods is to modify the speech
characteristics of a particular speaker in such manner, as to sound
like speech by a different target speaker. Current voice conversion
algorithms are based on deriving a conversion function by estimat-
ing its parameters through a corpus that contains the same utter-
ances spoken by both speakers. Such a corpus, usually referred
to as a parallel corpus, has the disadvantage that many times it is
difficult or even impossible to collect. Here, we propose a voice
conversion method that does not require a parallel corpus for train-
ing, i.e. the spoken utterances by the two speakers need not be the
same, by employing speaker adaptation techniques to adapt to a
particular pair of source and target speakers, the derived conver-
sion parameters from a different pair of speakers. We show that
adaptation reduces the error obtained when simply applying the
conversion parameters of one pair of speakers to another by a fac-
tor that can reach 30% in many cases, and with performance com-
parable with the ideal case when a parallel corpus is available.

1. INTRODUCTION

Voice conversion methods attempt to modify the characteristics of
speech by a given source speaker, so that it sounds as if it was spo-
ken by a different target speaker. Applications for voice conver-
sion include “personalization” of a Text-To-Speech (TTS) synthe-
sis system so that it “speaks” with the voice of a particular person,
as well as creating new voices for a TTS system without the need
of retraining the system for every new voice. A number of differ-
ent approaches has been proposed for achieving voice conversion
(see [1, 2, 3] and the references therein).

The common characteristic of these approaches is that they
focus on the short-term spectral properties of the speech signals,
which they modify according to a conversion function designed
during the training phase. During training, the parameters of this
conversion function are derived based on minimizing some error
measure. In order to achieve this however, a speech corpus is
needed that contains the same utterances (words, sentences, etc.)
from both the source and target speakers. The disadvantage of this
method is that for many cases it is difficult or even impossible to
collect such a corpus. If, for example, the desired source or target
speaker is not a person directly available, it is evident that collect-
ing such a corpus would probably be impossible, especially since
a large number of data are needed in order to obtain meaningful
results. Recently, an algorithm that attempted to address this issue
was proposed [4], by concentrating on the phonemes spoken by
the two speakers. The objective was to derive a conversion func-
tion that can transform the phonemes of the source speaker into the
corresponding phonemes of the target speaker, thus not requiring
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a parallel corpus for training. However, accurately recognizing the
phonemes spoken by the two speakers during training, as well as
the phonemes spoken by the source speaker during conversion, is
essential for this algorithm to operate correctly, and this can be a
difficult requirement to meet in practice.

Here we propose a conversion algorithm that relaxes the con-
straint of using a parallel corpus during training. Our approach
is to adapt the conversion parameters for a given pair of source
and target speakers, to the particular pair of speakers for which no
parallel corpus is available. Referring to Fig. 1, we assume that a
parallel corpus is available for speakers A and B (in the left part of
the diagram), and for this pair a conversion function is derived by
employing one of the conversion methods that are given in the lit-
erature [3]. For the particular pair that we focus on, speakers C and
D (in the right part of the diagram), a non-parallel corpus is avail-
able for training. Our approach is to adapt the conversion function
derived for speakers A and B to speakers C and D, and use this
new adapted conversion function for these speakers. Adaptation is
achieved by relating the non-parallel corpus to the parallel corpus,
as shown in the diagram and detailed in the following sections.

2. SPECTRAL CONVERSION

Voice conversion is essentially achieved by spectral conversion.
The objective of spectral conversion is to derive a function that
can convert the short-term spectral properties of a reference wave-
form into those of a desired signal. A training dataset is created
from the existing reference and the target speech waveforms by
applying a short sliding window and extracting the parameters that
model the short-term spectral envelope (in this paper we use the
line spectral frequencies - LSF’s - due to their desirable interpo-
lation properties [3]). This procedure results in two vector se-
quences, [T1Z2...%,] and [y, Yy, ...y, ], of reference and tar-
get spectral vectors respectively. A function F(-) can be designed
which, when applied to vector x, produces a vector close in some
sense to vector y,. Recent results have clearly demonstrated the
superiority of the algorithms based on Gaussian mixture models
(GMM’s) for the voice conversion problem [2, 3].

According to GMM-based algorithms, a sequence of spectral
vectors & as above can be considered as a realization of a random
vector « with probability density function (pdf) as GMM

M

g(@) = p(wi)N(z; puf, BF),

i=1

6]

where, p(w;) is the prior probability of class w;, and N (x; p, X)
is the multivariate normal distribution with mean vector @ and co-
variance matrix 3. The parameters of the GMM, i.e. the mean
vectors, covariance matrices and priors, can be estimated using the
expectation maximization (EM) algorithm [5].
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The analysis that follows focuses on the conversion method of
[3], which offers great insight as to what the conversion parameters
represent. Assuming that « and y are jointly Gaussian for each
class w;, then, in mean-squared sense, the optimal choice for the
function F is

F(xk)

E(ylzx)

M
> plwilar) [H? +2ESE (k- #f)] ,

i=1
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where E(-) denotes the expectation operator and the conditional
probabilities p(w;|x ) are given from

pwi)N(@w; pf, 257)
S p(wi)N (wr; pt, B5°)

If the source and target vectors are concatenated, creating a new
sequence of vectors zj that are the realizations of the random vec-
tor z = [T y”]T (where T denotes transposition), then all the
required parameters in the above equations can be found by esti-
mating the GMM parameters of z. Then,
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The EM algorithm is applied to z. Since this method estimates the
desired function based on the joint density of « and y, it is denoted
as the JDE method. Note that in order to estimate the GMM of z,
it is required to correctly align vectors  and y,, during training,
and this can only be achieved when a parallel corpus is used.

The JDE spectral conversion algorithm can be implemented
with the covariance matrices having no structural restrictions or
restricted to be diagonal, denoted as full and diagonal conversion
respectively. Full conversion is of prohibitive complexity when
combined with the adaptation algorithm for the non-parallel cor-
pus conversion problem examined in the next section, thus here
we concentrate on diagonal conversion. Note that the covariance
matrix of z for the JDE method cannot be diagonal because this
method is based on the cross-covariance of « and y which is found
from (4). This will be zero if the covariance of z is diagonal. Thus,
in order to obtain an efficient structure, we must restrict each of the
matrices 35, X%, 337 and ¥ in (4) to be diagonal. For achiev-
ing this restriction, the EM algorithm for full conversion must be
modified accordingly, and the details can be found in [6].

plwilzr) = (3)
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3. ML CONSTRAINED ADAPTATION

The majority of spectral conversion methods that have been de-
scribed so far in the literature, including the GMM-based methods,
assume a parallel speech corpus for obtaining the spectral conver-
sion parameters for every pair of reference and target speakers.
Our objective here is to derive an algorithm that relaxes this con-
straint. In other words, we propose in this section an algorithm that
derives the conversion parameters from a speech corpus in which
the reference and target speakers do not necessarily utter the same
words or sentences. In order to achieve this result, we apply the
maximum-likelihood constrained adaptation method [7], which of-
fers the advantage of a simple probabilistic linear transformation
leading to a mathematically tractable solution.

In addition to the pair of speakers for which we intend to derive
the non-parallel training algorithm, we also assume that a parallel
speech corpus is available for a different pair of speakers. From
this latter corpus, we obtain a joint GMM model, derived as ex-
plained in Section 2. In the following, the spectral vectors that
correspond to the reference speaker are considered as realizations
of random vector x, while y corresponds to the target speaker of
the parallel corpus. From the non-parallel corpus, we also obtain a
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Fig. 1. Block diagram outlining spectral conversion for a parallel
and non-parallel corpus. In the latter case, spectral conversion is
preceded by adaptation of the derived parameters from the parallel
corpus to the non-parallel corpus.

sequence of spectral vectors, considered as realizations of random
’ ’
vector x for the reference speaker and y for the target speaker.
R ’
We then attempt to relate the random variables  and x, as well

’ . . . .
as y and y, in order to derive a conversion function for the non-
parallel corpus based on the parallel corpus parameters.

7.
We assume that the target random vector x is related to refer-
ence random vector & by a probabilistic linear transformation

Aix + by with probability p(A1|w;)
Asx + by with probability p(Az|w;)
. . )

Anz + by with probability p(An|w;).
This equation corresponds to the GMM constrained estimation that

relates z_ with z in the block diagram of Fig. 1. In the above equa-
tion, A ; denotes a K x K dimensional matrix (K is the number of
components of vector x), and b; is a vector of the same dimension
with x. Each of the component transformations j is related with a
specific Gaussian ¢ of & with probability p(\;|w;) satisfying

N
doplw) =1, i=1,...,M, 6)
j=1

where M is the number of Gaussians of the GMM that corresponds
to the joint vector sequence of the parallel corpus. Clearly,
8@ Jwi, Aj) = N(@ s Ajpf + b, ASSTAT), (D)

resulting in the pdf of z

M N
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In similar manner, we relate the random vectors y and y by an-
other probabilistic linear transformation

Ciy +di  with probability p(k1|w;)
Coy +dz  with probability p(k2|w;)
. . 9

CLy +dp  with probability p(kz |ws).



The above equation corresponds to the GMM constrained estima-

tion that relates y’ with y in the block diagram of Fig. 1. The
matrices A ; and C,, the vectors b; and d,, and the probabilities
p(wi), p(A\j|ws), and p(k,|w;), can be estimated by use of the non-
parallel corpus and the GMM of the parallel corpus, using maxi-
mum likelihood estimation techniques. The EM algorithm can be
applied to this case in a similar manner to estimating the param-
eters of a GMM from observed data. In essence, it is a linearly
constrained maximum-likelihood estimation of the GMM param-
eters. Note that classes w; are the same for  and y by design
in Section 2. Under this assumption and given the linearity of the

transformations (5) and (9), x and y' will also be jointly Gaussian
for a particular class w;, Aj, and k,, and the pdf of y' will have a
similar form with (8). It is now possible to derive the conversion
function for the non-parallel training problem, based entirely on
the parameters derived from a parallel corpus of a different pair of
speakers. Based on the aforementioned assumptions it holds that
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since
23'1' =C,Z¥AT, 2;”'1' =A;ZFAT, (11
and
Wl = Coul +dy, il = Ayl + by, (2

Finally, the conversion function for the non-parallel case becomes

Flxy) = Ey (13)
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and g(a:, |wi, A;) is given from (7). Thus, all the parameters of the

conversion function (13) are known.

4. RESULTS AND DISCUSSION

The spectral conversion method for the case of a non-parallel train-
ing corpus that was derived in the previous paragraph is evaluated
in this section. As mentioned previously, the spectral vectors used
here are the LSF’s (22" order) due to their favorable interpolation
properties. It is important to mention that the corpus used is the
VOICES corpus, available from OGI’s CSLU [8, 9]. This is a par-
allel corpus and is used for both the parallel and non-parallel train-
ing cases that are examined in this section, in a manner explained
in the next paragraph. The error measure used in this section is the

Normalized Error

Conversion Testl Test2
Method None [ Adapt. None [ Adapt.
Case 1-A 0.8882 | 0.6809 || 1.0264 | 0.6980
Case 2-A 0.7307 | 0.6761 || 0.8342 | 0.7073
Case 1-B 0.8512 | 0.6368 || 1.0371 | 0.7462
Case 2-B 0.7252 | 0.6169 || 0.8850 | 0.6346

Parallel 0.5221 0.5453

Table 1. Normalized error for 2 different pairs of parameters de-
rived from a parallel corpus, when applied to 2 different speaker
pairs of a non-parallel corpus.

mean-squared error normalized by the initial distance between the
reference and target speakers, i.e.

& iy — F (0)|I?

2
&y —l®

where x, is the reference vector at instant k, y,, is the target vec-
tor at instant k, and F(-) denotes the conversion function used,
which can be the one of (2) or (13) depending whether training
is performed in a parallel or non-parallel manner. For all results
given in this section, the number of GMM classes for the param-
eters obtained from the parallel corpus is 16, while the number of
vectors for the parallel and the non-parallel training corpus is about
19,000 (denoted here as full corpus), which corresponds to 40 out
of the 50 sentences available in the corpus. The results given in
this section are the averages of the remaining 10 sentences.

In Table 1, the normalized mean-squared error is given for two
different pairs of non-parallel reference and target speakers (Test 1
and Test 2 in the table) for two different adaptation cases (i.e. two
different pairs of speakers in parallel training, Cases 1-2). The
column denoted as “None” in this table corresponds to no adapta-
tion, i.e. when the derived parameters from the parallel corpus are
directly applied to the speaker pair from the non-parallel corpus,
while the column “Adapt.” corresponds to the conversion function
of (13), for 4 adaptation parameters for both the reference and the
target speaker (L = N = 4). The last row of the table gives the er-
ror when the conversion parameters are derived by parallel training
(i.e. the ideal case). This table shows the performance of our algo-
rithm for two different choices of the training corpus. For the first
one (Cases 1-A and 2-A), the corpus for the parallel pair (speakers
A and B) is chosen to be sentences 1-10 of the full corpus, while
for adaptation, sentences 11-25 for relating speaker C with speaker
A and sentences 26-40 for relating speaker D with speaker B (see
Fig. 1). This means that all sentences are different for the differ-
ent tasks. For the second choice of corpus (Cases 1-B and 2-B),
the full training corpus is used for all tasks. Inevitably for this lat-
ter case, the sentences in parallel and non-parallel training will be
the same. In parallel training, the fact that the same sentences are
used is essential since the reference and target vectors are aligned,
and this vector-to-vector correspondence is required during train-
ing. On the contrary, for non-parallel training the corpus is used
as explained here for adaptation of the spectral conversion param-
eters, thus the fact that the corpus was created in a parallel manner
is not exploited and is not expected to influence the results. The
results 1-A and 2-A, derived with different sentences as explained,
are included in order to further support this argument. We tested
the performance of the algorithm with a variety of speaker pairs,
using 10 out of the 12 speakers in the corpus, but here only some
representative results are given due to space limitations.

It is apparent from Table 1 that the adaptation methods pro-
posed result in a large error decrease compared to simply apply-
ing the conversion parameters of a given pair to a different pair of
speakers. This improvement can reach the level of 30% when the
initial distance is large, which is exactly what is desired. This is
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Fig. 2. Normalized error (a) when using different number of adap-
tation parameters (0 corresponds to no adaptation), and (b) for var-
ious choices of training dataset (see Table 2). The dashed line cor-
responds to the error when a parallel corpus is used for training.
The dashed-dotted line corresponds to no adaptation.

true both when the sentences are different or the same (Cases 1-A
& 2-A vs. 1-B & 2-B) and this supports our previous argument.
The performance for the latter cases is on the average better com-
pared to the former, due to the fact that when the full corpus is used
for adaptation, more vectors are available and adaptation is more
accurate (40 vs. 15 sentences, see also Fig. 2(b) discussed later in
this section). The performance that we obtain when the conversion
parameters are derived by parallel training is always better, com-
pared with non-parallel training (although in most cases the two
are comparable). This is an expected and intuitive result since in
parallel training we exploit a particular advantage of the speech
corpus which is not available in a non-parallel corpus. The meth-
ods proposed here intend to address the lack of a parallel corpus
and are suitable only for this case. The error does not seem to dis-
play any particular patterns when no adaptation is performed, but
it interesting that in most cases we examined the initial distance
is decreased (i.e. error less than one). In future work we intend to
further analyze this issue using a larger number of data.

In Fig. 2(a), the performance of the algorithm for a different
number of adaptation parameters is shown, using the full corpus
both for parallel and non-parallel training. The number of adapta-
tion parameters that is given is the same for the adaptation of the
reference speaker and that of the target speaker, although a differ-
ent number can be used for each case. Adaptation of 0 parameters
in this figure corresponds to the case when no adaptation of the
parameters is performed. From this figure it is evident that, as ex-
pected, there is a significant error decrease when increasing the
number of adaptation parameters, since this corresponds to a more
accurate modeling of the statistics of the spectral vectors. On the
other hand, when increasing the number of adaptation parameters
above 4, the error remains approximately constant, concluding that
this number of parameters is sufficient to model the statistics of the
spectral vectors and further increase does not offer any advantage.

In Fig. 2(b), the performance of the algorithm is given for dif-
ferent sizes of the non-parallel corpus, using the full corpus for
parallel training, and 4 adaptation parameters for both the refer-
ence and target speaker. The dataset numbers in the figure corre-
spond to the numbers of vectors given in Table 2. The error when
no adaptation is used (dashed-dotted line), as well as when the cor-
pus is used in a parallel manner (dashed line), is also shown. From

[ Dataset | 1 [ 2 ]
[ kVectors | 0.25 ] 0.5 ]

[ 4 [5[6T71]
[25[5][10]19]

3
1

Table 2. Number of vectors (thousands) in non-parallel training
for the datasets in Fig. 2(b).

this figure we can see that there is a significant error decrease when
the size of the corpus is increased. As is the case for the parallel
corpus [3], the error decrease is less significant when the size of
the corpus increases above 5,000 - 10,000 vectors.

5. CONCLUSIONS

Current voice conversion algorithms require a parallel speech cor-
pus that contains the same utterances from the source and target
speakers for deriving a conversion function. Here, we proposed
an algorithm that relaxes this constraint and allows for the cor-
pus to be non-parallel. It was shown that the proposed method
performs quite favorably and the conversion error is low and com-
parable with the error obtained with parallel training. We intend
to demonstrate the satisfying performance of this method subjec-
tively as well, which is clearly indicated by our initial listening
tests. Note that if the parallel corpus is made in different condi-
tions compared to the non-parallel corpus, then it is possible that
the adaptation algorithm described here might not result in sig-
nificant improvement, due to reasons such as microphone quality,
reverberation efc. This is an issue we intend to further explore.
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