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ABSTRACT

Microphone array post-filters have demonstrated their abil-
ity to greatly reduce noise at the output of a beamformer.
However, current techniques only consider a single source
of interest, most of the time assuming stationary back-
ground noise. We propose a microphone array post-filter
that enhances the signals produced by the separation of si-
multaneous sources using common source separation algo-
rithms. Our method is based on a loudness-domain optimal
spectral estimator and on the assumption that the noise can
be described as the sum of a stationary component and of
a transient component that is due to leakage between the
channels of the initial source separation algorithm. The sys-
tem is evaluated in the context of mobile robotics and is
shown to produce better results than current post-filtering
techniques, greatly reducing interference while causing lit-
tle distortion to the signal of interest, even at very low SNR.

1. INTRODUCTION

Mobile robots with abilities to talk and listen should be able
to discriminate and separate simultaneous sound sources
while moving. For example, in the context of the cocktail
party effect, the algorithms have to be robust and should al-
low the separation of simultaneous voices.

In the present work we first perform a crude linear sepa-
ration of the sources and then use the proposed post-filter to
further enhance the signals and suppress the contribution of
the perturbating sources. Our post-filter is inspired by the
original work of Cohen [1] who proposes a post-filter de-
signed for a beamformer with one source of interest in the
presence of stationary background and transient noises. In
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the present work we extend the principle to multiple local-
ized sources of interest.

We assume that both the signal of interest and the in-
terferences may be present at the same time and for the
same frequency bin. The novelty of our approach resides in
the fact that, for each source of interest, we decompose the
noise estimate into a stationary and a transient component
assumed due to leakage between channels occuring during
the initial separation stage.

For each output channel of the linear source separator,
we adaptively estimate the interference parameters (vari-
ance and SNR) and use them 1) to compute the probability
of targeted speech presence 2) in the suppression rule when
both speech and interference are present.

We also propose the use of a Minimum Mean Square
Estimation (MMSE) of the loudness – instead of the com-
mon log amplitude estimation – yielding a more efficient
cleaning of the signal when targeted speech is not present in
the channel of interest.

Section 2 gives an overview of the system and Section
3 describes the proposed post-filter. Results and discussion
are then presented in Section 4 with the conclusion in Sec-
tion 5.

2. SYSTEM OVERVIEW

The source separation system discussed here is composed of
two subsystems: 1) a linear source separation (LSS) algo-
rithm and 2) the proposed post-filter (Fig. 1). By linear
separation algorithm, we mean any separation algorithm
for which a channel output is the result of a linear trans-
formation of the microphone signals. Most Blind Source
Separation (BSS) algorithms fall in this category, as well as
distortion-less beamformers and Geometric Source Separa-
tion (GSS) techniques [2].

The Linear Source Separation system used for our ex-
periments is inspired from the second constrained (C2) meth-
od in [2] and comprises

1. The localization algorithm such as the one described
in [3] – It is based on the Time Delay of Arrival
(TDOA) estimation;
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Fig. 1. Overview of the complete separation system.
Zn(k, l), n = 0 . . . N − 1: Microphone inputs,
Ym(k, l), m = 0 . . .M − 1: Inputs to the post-filter,
X̂m(k, l) = Gm(k, l)Ym(k, l), m = 0 . . .M − 1: Post-
filter outputs.

2. The estimated mixing matrix – Assuming unity gain
for all microphones, while the phases are computed
from the localization algorithm;

3. The pseudo-inverse of the estimated mixing matrix.

In the design of the proposed system, we already take into
account that the final application is mobile robotics. As a
consequence, our implementation of the LSS system does
not include any iterative algorithm – by the time conver-
gence is reached, the robot (or one source) has already
moved. We are aware that the LSS algorithm is far from
perfect (hence the need for a post-filter) because of local-
isation accuracy, reverberation and imperfect microphones
(non-identical response). We design the post-filter in such
a way that any source separation algorithm (including blind
algorithms that do not require localization of the sources)
can be used.

3. LOUDNESS-DOMAIN SPECTRAL
ATTENUATION

We derive a frequency-domain post-filter that is based on
the optimal estimator originally proposed by Ephraim and
Malah [4, 5]. The novelty of our approach resides in the
fact that, for a given channel output of the LSS, the tran-
sient components of the corrupting sources is assumed to be
due to leakage from the other channels during the LSS pro-
cess. Furthermore, for a given channel, the stationary and
the transient components are combined into a single noise
estimator used for noise suppression, as shown in Figure 1.

For this post-filter, we consider that all interferences
(except the background noise) are localized (detected) sour-
ces and we assume that the leakage between channels is

constant. This leakage is due to reverberation, localization
error, differences in microphone frequency responses, near-
field effects, etc.

The next subsection describes the estimation of noise
variances that are used to compute the weighting function
Gm by which the outputs Ym of the LSS is multiplied to
generate a cleaned signal which spectrum is denoted X̂m.

3.1. Noise estimation

The noise variance estimation λm(k, l) is expressed as:

λm(k, l) = λstat.m (k, l) + λleakm (k, l) (1)

where λstat.m (k, l) is the estimate of the stationary compo-
nent of the noise for source m, at frame l, for the kth fre-
quency component and λleakm (k, l) is the estimate of source
leakage.

We compute the stationary noise estimate λstat.m (k, l)
using the Minima Controlled Recursive Average (MCRA)
technique proposed by Cohen [6].

To estimate λleakm we assume that the interference from
other sources is reduced by a factor η (typically −10 dB ≤
η ≤ −5dB) by the separation algorithm (LSS). The leakage
estimate is thus expressed as:

λleakm (k, l) = η

M−1∑
i=0,i6=m

Si(k, l) (2)

where Sm(k, l) is the smoothed spectrum of themth source,
Ym(k), and is recursively defined (with αs = 0.7) as:

Sm(k, l) = αsSm(k, l − 1) + (1− αs)Ym(k, l) (3)

3.2. Suppression rule in the presence of speech

We now derive the suppression rule under H1, the hypoth-
esis that speech is present. From here on, unless otherwise
stated, them index and the l arguments are omitted for clar-
ity and the equations are given for each m and for each l.

The proposed noise suppression rule is based on MMSE
estimation of the spectral amplitude in the loudness domain,
|X(k)|1/2. The choice of the loudness domain over the
spectral amplitude [4] or log-spectral amplitude [5] is moti-
vated by better results obtained using this technique, mostly
when dealing with speech presence uncertainty (Section
3.3).

The loudness-domain amplitude estimator is defined by:

Â(k) = (E [|X(k)|α |Y (k) ])
1
α = GH1

(k) |Y (k)| (4)

where α = 1/2 for the loudness domain and GH1(k) is the
spectral gain assuming that speech is present.



The spectral gain for arbitrary α is derived from Equa-
tion 13 in [5]:

GH1
(k) =

√
υ(k)

γ(k)

[
Γ
(

1 +
α

2

)
M
(
−α

2
; 1;−υ(k)

)] 1
α

(5)
where M(a; c;x) is the confluent hypergeometric function,
γ(k) , |Y (k)|2 /λ(k) and ξ(k) , E

[
|X(k)|2

]
/λ(k) are

respectively the a posteriori SNR and the a priori SNR. We
also have υ(k) , γ(k)ξ(k)/ (ξ(k) + 1) [4].

The a priori SNR ξ(k) is estimated recursively as:

ξ̂(k, l)=αpG
2
H1

(k, l−1)γ(k, l−1)+(1−αp)max{γ(k, l)−1, 0}
(6)

using the modifications proposed in [6] to take into account
speech presence uncertainty.

3.3. Optimal gain modification under speech presence
uncertainty

In order to take into account the probability of speech pres-
ence, we derive the estimator for the loudness domain:

Â(k) = (E [Aα(k) |Y (k) ])
1
α (7)

Considering H1, the hypothesis of speech presence for
source m, and H0, the hypothesis of speech absence, we
obtain:

E [Aα(k)|Y (k)] = p(k)E [Aα(k)|H1, Y (k)]

+ [1− p(k)]E[Aα(k)|H0,Y (k)](8)

where p(k) is the probability of speech at frequency k.
The optimally modified gain is thus given by:

G(k) =
[
p(k)GαH1

(k) + (1− p(k))Gαmin
] 1

α (9)

where GH1
(k) is defined in Eq. 5, and Gmin is the mini-

mum gain allowed when speech is absent. Unlike the log-
amplitude case it is possible to set Gmin = 0 without run-
ning into problems. For α = 1/2, this leads to:

G(k) = p2(k)GH1
(k) (10)

Setting Gmin = 0 means that there is no arbitrary limit
on attenuation. Therefore, when the signal is certain to be
non-speech, the gain can tend toward zero. This is espe-
cially important when the interference is also speech since,
unlike stationary noise, residual babble noise always results
in musical noise.

The probability of speech presence is computed as:

p(k) =

{
1 +

q̂(k)

1− q̂(k)
(1 + ξ(k)) exp (−υ(k))

}−1
(11)

Table 1. Log spectral distortion and segmental SNR for
each of the 3 separated sources.

LSD/SegSNR (dB) female 1 female 2 male 1
Mic. input 23.4/-5 21.6/-5 21.6/-6.2
LSS output 19.2/2.5 17.1/4.1 17.5/1.6

1-ch. post-filter 10.4/6.1 9.4/7.7 9.9/4.1
Cohen p-f 8.9/6.4 9.7/4.7 10.3/4.5

Proposed p-f 6.5/7.6 6.7/8.1 7/7.1

where q̂(k) is the a priori probability of speech presence for
frequency k and is defined as:

q̂(k) = 1− Plocal(k)Pglobal(k)Pframe (12)

where Plocal(k), Pglobal(k) and Pframe are defined in [6]
and correspond respectively to a speech measurement on
the current frame for a local frequency window, a larger
frequency and for the whole frame.

4. RESULTS

The system is evaluated in a context of mobile robotics,
where an array of 8 microphones is mounted on a mo-
bile robot. In order to test the system, 3 voices (2 female,
1 male) were recorded separately, in a quiet environment.
The background noise was recorded on a mobile robot and
is comprised of room ventilation and internal robot fans. All
four signals were recorded using the same microphone array
and subsequently mixed together to allow SNR and distance
mesures.

In evaluating our post-filter, we use both the segmental
SNR and the log spectral distortion (LSD), which is defined
as:

LSD =
1

L

L−1∑
l=0

 1

K

K−1∑
k=0

20 log10

|X(k, l)|+ ε∣∣∣X̂(k, l)
∣∣∣+ ε

2


1
2

(13)
where L is the number of frames, K is the number of fre-
quency bins and ε is meant to prevent extreme values.

Table 1 compares the results for separation of each of
the 3 original sources with the single-channel and the multi-
channel Cohen post-filters, both described in [1]. The Co-
hen post-filter is adapted to uses the other sources as refer-
ence noise signals. The improvement of our post-filter in
terms of LSD and SegSNR are confirmed by informal lis-
tening.

The spectrograms for the first source (female) is shown
in Figure 2. Even though the task involves non-stationary
interference with the same frequency content as the signal
of interest, we observe that our method (unlike the single-
channel post-filter) is able to remove most of the interfer-
ence, while not causing excessive distortion to the signal of



a) d)

b) e)

c) f)

Fig. 2. Spectrogram for separation of first source (female voice) (a) Average of microphone inputs (b) Linear separation
output (c) Single-channel post-filtering (d) Adaptation of Cohen post-filter (e) Proposed post-filter (f) Reference signal

interest. Also, for this task, we explain the improvement of
our post-filter over the Cohen multi-channel post-filter by
the fact that the interference is adaptively estimated even in
the presence of the source of interest. This is not the case
with the Cohen post-filter, for which the noise estimator (for
both stationary and transient noise) is only adapted when the
source of interest is absent.

5. CONCLUSION

We proposed a microphone array post-filter designed in the
context of separation of multiple simultaneous sources. It
is based on a loudness-domain MMSE estimator in the fre-
quency domain with a noise estimate that is computed as
the sum of a stationary noise estimate and an estimation of
leakage due to the linear source separation (LSS) algorithm.
Experimental results show a reduction in log spectral distor-
tion of up to 12 dB compared to the output of the LSS and
up to 4 dB over the single-channel post-filter.

The proposed post-filter is general enough to be appli-
cable to most source separation algorithms. A possible im-
provement to the algorithm would be to derive a method
that automatically adapts the leakage factor η to track the
leakage of an adaptive LSS algorithm.
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