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ABSTRACT

Segment vocoders play a special role in very low bitrate speech
coding to achieve intelligible speech at bitrates � 300 bits/sec. In
this paper, we explore the definition and use of automatically de-
rived units for segment quantization in segment vocoders. We con-
sider three automatic segmentation techniques, namely, the spec-
tral transition measures (STM), maximum-likelihood (ML) seg-
mentation (unconstrained) and duration-constrained ML segmen-
tation, towards defining diphone-like and phone-like units. We
show that the ML segmentations realize phone-like units which
are significantly better than those obtained by STM in terms of
match accuracy with TIMIT phone segmentation as well as ac-
tual vocoder performance measured in terms of segmental SNR.
Moreover, the phone-like units of ML segmentations also outper-
form the diphone-like units obtained using STM in early vocoders.
We also show that the segment vocoder can operate at very high
intelligibility when used in a single-speaker mode.

1. INTRODUCTION

Segment vocoders occupy a special place in very low bit-rate speech
coding for their ability to achieve intelligible speech at bit-rates of
800 bits/s (and less) down to 300 bits/s [1], [2], [3], [4], [5], [6].

Fig. 1 shows a segment vocoder with four basic components:

1. Segmentation of input speech (a sequence of LP parameter
vectors) into a sequence of variable length segments.

2. Segment quantization of each of these segments using a
segment codebook and transmission of the best-match code-
segment index and input segment duration.

3. Synthesis of speech by LP synthesis using the code-segment
time-normalized to match input segment duration.

4. The residual obtained by LP analysis is parameterized and
quantized; the residual decoder reconstructs the residual to
be used for synthesis in step (3).

The various segment vocoders proposed till date differ primar-
ily in terms of three aspects: i) Definition of segmental units used
for segment quantization, ii) How segmentation (step-1) and seg-
ment quantization (step-2) are realized and, iii) Type of segment
codebook.

The definition of an unit is implicitly tied to the manner in
which segmentation and segment quantization are performed. Much
of segment vocoder research has focused on the ‘phonetic-vocoder’
[4] which has evolved into the paradigm of recognition-synthesis
coding at very low bit rates [5], [6]. In these systems, segmen-
tation and segment quantization are performed in a single step of
‘phone decoding’, as in continuous speech recognition, using an
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Fig. 1. Segment vocoder

inventory of phone models, which are typically HMMs. This im-
plicitly defines the unit of segmentation and segment quantization
as ‘phonetic units’ as the phone inventory is obtained from manu-
ally labeled phonetic database (training data).

In contrast, the earliest vocoder [1], [2] uses ‘automatically de-
rived units’. Here, the automatic segmentation and segment quan-
tization are performed as two separate steps. Automatic segmen-
tation is done using a simplistic spectral transition measure (STM)
which generates diphone-like units; these are used in both segment
codebook design and segment quantization. Other attempts to de-
part from phonetic units and use automatically derived units are
[3] and [5]. In [3] they design an optimized segment codebook by
an iterative joint-segmentation and clustering procedure and use it
for segment quantization as in connected phone decoding in pho-
netic vocoders. In [5], they use temporal decomposition and vec-
tor quantization to derive ‘multi-gram units’, which are eventually
trained to be phonetic in nature. Both these systems are complex
in both segment design and segment quantization operations.

Segment vocoders also differ on the nature of the codebook
used: i) non-parametric templates and, ii) parametric models such
as HMM. Either of these will determine the quality of synthe-
sized speech and the corresponding bit-rate. Considering the non-
parametric approach (which is capable of higher quality synthesis),
this paper is concerned with determining which type of automat-
ically derived units can provide best performance. Thus, we con-
sider two types of automatically derived units, viz., diphone-like
and phone-like and three types of segmentation techniques, viz.,
spectral transition measure (STM), maximum - likelihood (ML)
segmentation (unconstrained) and duration constrained ML seg-



mentation and evaluate their performance objectively in a vocoder
using segmental SNR.

2. AUTOMATIC SEGMENTATION

2.1. Spectral transition measure (STM)

The ‘spectral transition measure’ (STM) is based on the principle
of measuring the spectral derivative at every frame instant. STM
was adopted in early segment vocoders for diphone-like segmenta-
tion [1], [2]. We consider two types of STM as used in [1], namely,
the �� and �� measures. These are defined as follows: Let �� be
the LP parameter vector at the ��� frame. The STM at frame �,
�����, is given by ����� � ��� � �����

�� � � �� �.
����� as a function of � exhibits peaks at fast spectral tran-

sitions (such as from one phone to another) and valleys at steady-
state regions (such as within a vocalic segment). ����� gives a
smoother measure of the spectral derivative. Thus, peak-picking
of ����� or ����� locates transitions or phone boundaries and re-
sults in a phone-like segmentation. Picking the minima (valleys) of
these functions locates a frame within steady-state regions that has
maximum local stationarity and corresponds to a diphone bound-
ary. Successive peaks therefore mark phone-like (PL) segments
and successive valleys mark diphone-like (DPL) segments.

We use the extrema picking algorithm (EPA) used in [7] for
peak- and valley- picking on ����� and ����� functions. This al-
gorithm employs a threshold (Æ) to detect the extrema (peaks and
valleys) alternatingly in a left-to-right scanning. The algorithm
can be stated as follows: Keep searching for a peak (valley)
by repeated updating of current maximum � (current minimum �)
every time a local maximum (minimum) is detected until a func-
tion value smaller than ��� Æ�� (larger than ��� Æ��) is encoun-
tered. After this, start searching for a valley (peak).

While small values of Æ (close to 0) result in over-segmentation,
large values of Æ (close to 1) result in under-segmentation and Æ
needs to be optimized for a desired segment rate (See Sec. 2.3.1).

2.2. Maximum-likelihood (ML) segmentation

2.2.1. ML segmentation – unconstrained (ML(UC))

Let a speech utterance be given by��
� � ������� � � � ��� �, which

is a LP parameter vector sequence of � speech frames, where, ��
is a �-dimensional parameter vector at frame ‘�’. The segmenta-
tion problem is to find ‘�’ consecutive segments in the observa-
tion sequence ��

� . Let the segment boundaries be denoted by the
sequence of integers � � �	�� 	�� � � � � 	��. The ��� segment starts
at frame 	��� � � and ends at frame 	�; 	� � �, and 	� � � .

The maximum likelihood (ML) segmentation is based on us-
ing the piecewise stationarity of speech as the acoustic criterion for
determining segments. The criteria is to obtain segments which
exhibit maximum acoustic homogeneity within their boundaries.
The acoustic inhomogeneity of a segment is measured in terms of
an ‘intra-segmental distortion’, given by the sum of distances from
the frames that span the segment, to the centroid of the frames
comprising the segment. The optimal segmentation �	��� 	

�
�� � � � �

	��� is obtained so as to minimize the sum of intra-segment distor-
tion over all possible segment boundaries, i.e., minimize


��� � � �
��

���

���

��������

����� ��� (1)

where, 
��� � � is the total distortion of a � - segment segmenta-
tion of��

� � ������� � � � ��� �; �� is the centroid of the ��� seg-

ment consisting of the spectral sequence ���
������

� ���������

� � � � ���� for a specific distance measure ���� ��. For the Euclidean
distance ‘�’, �� is the average of the frames in the segment���

������
.

The optimal segment boundaries are solved efficiently using a
dynamic programming (DP) procedure [8], [9] using the recursion


��� 	�� � ��	
����



�� � �� 	���� ���	��� � �� 	��� (2)

for all possible 	���; 
��� 	�� is the minimum accumulated distor-
tion upto the ��� segment (which ends in frame 	�), i.e., 
��� 	��
is the minimum distortion of a segmentation of ������� � � � � ����
into � segments; ��	��� � �� 	�� is the intra-segment distortion of
the ��� segment���

������
. The segmentation problem is solved by

invoking (2) for 
���� �; this is computed efficiently by a trellis
realization. The optimal segment boundaries �	��� 	

�
�� � � � � 	

�
�� are

retrieved by backtracking on the trellis along the optimal alignment
path corresponding to ��	�
���� ��.

2.2.2. ML segmentation – duration constrained (ML(DC))

By definition, ML segmentation produces a segmentation where
each segment is maximally homogenous; when the segment rate
equals the phone-rate of natural speech, the resulting segments will
be quasi-stationary and would correspond to the steady-state re-
gions of phonetic units. However, even for a correct segment rate,
ML segmentation can result in segment lengths which are unnat-
urally short (1 frame long) or long (upto even 70 frames). Such
segments will be distorted significantly during segment quantiza-
tion and result in poor vocoder performance.

In the distribution of phone durations in TIMIT database, nearly
95% of the labeled phonetic segments are in the range of 1-20
frames. In order to limit the segment lengths of ML segmentation
to such a meaningful range (of actual phones durations), we mod-
ify the ML segmentation to have ‘duration constraints’. Here, the
optimal segments are forced to be within a duration range of 
�� 
�,
where � and 
 are the minimum and maximum lengths possible
(in frames). Segments of lengths � � and � 
 are not generated
at all. This is achieved by restricting the candidate boundaries in
the search for optimal segment boundaries in (2) as follows:


��� 	�� � ��	
�������������	



�� � �� 	���� ���	��� � �� 	���

This also has the advantage of reducing the computational
complexity of ML segmentation from ����� to ���� � where � �

 � � � � with typical values of 
�� 
� � 

� 
��.

2.3. Performance evaluation of STM and ML segmentations

Here, we evaluate the segmentation performance of the two seg-
mentation techniques: i) STM with �� and �� functions (STM(��)
and STM(��)) and, ii) ML segmentation – unconstrained (ML(UC))
and duration constrained (ML(DC)) for phone-like segmentation
using the manually labeled phonetic database TIMIT. We use 4
measures to quantify the degree of match between the automatic
segmentation and TIMIT segmentation. These are: % Match (%M),
% Segment match (%S), % Insertions (%I) and % Deletions (%D).

%M gives the percentage of segments boundaries obtained by
the automatic segmentation, within a specified interval of 
 frames
(or � � 
� ms, corresponding to a 10ms analysis frame) of the
manual segments. %S gives the percentage of two successive seg-
ment boundaries in the automatic segmentation each to be within
the interval � ms of successive manual segments. This essentially
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Fig. 2. Segmentation performance of segmentation techniques STM(��), STM(��), ML(UC) and ML(DC) using segmentation match mea-
sures (a) % Match (%M), (b) % Segment match (%S), (c) % Insertions (%I) and (d) % Deletions (%D) for 4 TIMIT sentences.

measures the percentage of ‘segment match’, i.e., a segment in
automatic segmentation matching a segment in manual segmen-
tation. %I gives the percentage of segments obtained by the au-
tomatic segmentation without a corresponding manual segment
within the interval of � ms. %D gives the percentage of manu-
ally obtained segments without any corresponding automatically
segmented boundary within the interval of � ms. For a good seg-
mentation match with the manual segmentation, it is desired to
have as high a %M and %S and as low a %I and %D as possible.

2.3.1. STM segmentation

In STM, the threshold Æ used in the extrema-picking-algorithm
plays a crucial role in determining the quality of segmentation and
hence needs to be optimized to yield good segmentation match as
defined above. For this purpose, we used the segment rate (num-
ber of segment/sec �) as the primary measure to be matched. For
instance, TIMIT has a phone-rate of � � ���� phones/second, as
measured over 300 sentences. In STM, we set Æ to a value that
results in this segment rate. The optimal Æ corresponding to a seg-
ment rate of 12.5 seg/sec also results (automatically and interest-
ingly) in the highest %M for the lowest (%I � %D) values.

Fig. 2 shows the measures (%M, %S, %I, %D) for 4 TIMIT
sentences (sx213, si916, si1086, sa1) from 4 different
speakers (2 male and 2 female) in the database; these TIMIT sen-
tences are marked as (1, 2, 3, 4) on the �-axis. From this figure,
it is clear that STM(��) is significantly better than STM(��) for
realizing phone-like segments, with �� yielding as much as 20%
higher %M and %S than ��. The corresponding %I and %D are
10-20% lower for �� than ��.

This follows from the fact that �� is well suited for detecting
fast spectral transitions such as phone boundaries and hence in bet-
ter phone-like segmentation than ��. Conversely, the smoother ��
is more suited for a diphone-like segmentation than ��, where it is
necessary to detect steady-states by valley-picking. We therefore
focus on STM(��) for phone-like (PL) segmentation and STM(��)
for diphone-like (DPL) segmentation in further experiments with
STM in the performance of the overall vocoder in Sec. 3.

2.3.2. ML segmentation

The ML segmentation performed using the DP recursion (2) can
segment the input speech into a pre-specified number of segments.
We specify the number of segments required as � � ��, where
� is the desired segment rate (such as 12.5 seg/sec) and � is the
duration (in secs) of the speech interval being segmented. Such a

choice of segment-rate results in high segmentation performance
as given by (%M, %S, %I, %D) with respect to TIMIT boundaries.

In the case of ML(DC), in addition to the segment rate, we
also need to specify the duration constraints ��� ��. We studied
the performance of ML(DC) in terms of the 4 measures (%M, %S,
%I, %D), for various duration constraint ranges ��� ��with respect
to ML(UC). Based on this, we chose a duration constraint range
of [2,16] as a conservative range for ML(DC) so as to retain the
performance of ML(UC) while ensuring phone-like segments.

Fig. 2 also shows the performance of unconstrained ML seg-
mentation (ML(UC)) and duration constrained ML segmentation
(ML(DC) in terms of the 4 measures (%M, %S, %I, %D). Clearly,
ML(UC) outperforms STM segmentations with the highest %M
and %S and lowest %I and %D across all the TIMIT sentences.
ML(UC) is better than STM(��) by as much as 20% in %M and
30% in %S. %I and %D for ML(UC) are lower by as much as
40% and 20% respectively when compared to STM(��). Dura-
tion constrained ML segmentation (ML(DC)) performs as well as
ML(UC) with only marginal differences. Thus ML(DC), with its
lower complexity, proves to be an efficient way of realizing phone-
like segmentation under the ML formulation, clearly outperform-
ing the more simplistic STM based segmentation. Note that the
60% %S (phone-like segment match) obtained by ML segmenta-
tion is comparable to state of the art phone recognition accuracies.

3. EXPERIMENTS AND RESULTS

Segment codebook: The segment codebook has to be representa-
tive of the acoustic space of the segments generated by the auto-
matic segmentation. The use of large randomly populated code-
books from such segment corpus was considered in [2], motivated
by the theoretical observation that a random quantizer is optimal
for Gaussian random vectors of large dimensionality – in this case,
variable length segments. It was found from experiments that the
random codebook indeed performed perceptually close to a quan-
tizer obtained by clustering procedures [2] thus obviating compu-
tationally expensive clustering and modeling [3], [5].

In this paper, we use such a large size random codebook of size
8192 corresponding to a bit-rate of 13 bits/segment. This was ob-
tained from automatic segmentation of about 300 sentences (from
nearly 30 speakers) in the TIMIT database; this corresponds to
the multi-speaker (MS) segment codebook. A single-speaker (SS)
codebook of the same size was also designed (for experiments with
single-speaker mode) from about 15 minutes of read speech. The
speech was sampled at 16kHz and the LP analysis was done on



10ms frames with no overlap; the LP parameters used are log-
area-ratios (LARs) of dimension 16.
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Fig. 3. Segment vocoder performance in terms of segmental SNR
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Segmental SNR: In this paper, our objective is to characterize
the performance of segment quantization through different auto-
matic segmentation schemes; therefore, we have isolated the per-
formance of the segment vocoder to have only segment quantiza-
tion without the residual parameterization and quantization, i.e.,
the residual is retained as such. The LP synthesis with unparam-
eterized residual retains the sample to sample correspondence be-
tween the synthesized speech and input speech. This allows defin-
ing an objective measure between the output speech and the input
speech in terms of SNR measures such as ‘segmental SNR’ (Seg-
SNR) for evaluating the vocoder performance with respect to its
segment quantization performance alone. The segment vocoder
has a bit-rate of 300 bits/sec when the residual is quantized.
Results: Fig. 3 shows the Seg-SNR obtained on 3 TIMIT sen-
tences (sx213, si1086, sa2) for the following 4 cases of
automatic segmentations: i) STM(��)DPL-SS: STM with �� func-
tion for diphone-like segmentation, ii) STM(��)PL-SS: STM with
�� function for phone-like segmentation, iii) ML(UC)PL-SS: Un-
constrained ML segmentation for phone-like segmentation and, iv)
ML(DC)PL-SS:Duration constrained ML segmentation for phone-
like segmentation. These are for vocoder operation using a single-
speaker (SS) segment codebook and are hence labeled with SS as
a suffix; these 4 cases are marked as solid lines in the figure. Fig.
3 also shows the Seg-SNR for the 3 TIMIT sentences when coded
using a multi-speaker (MS) segment codebook for the two cases
of ML(UC)PL-MS and ML(DC)PL-MS. These are labeled with
MS as suffix and marked as dashed lines in the figure. The single-
speaker codebook is obtained from the same speaker as the speaker
of the 3 test TIMIT sentences; this speaker is outside the 30 speak-
ers (TIMIT) used for building the multi-speaker codebook.

The following can be observed from the figure:
STM(��)PL-SS performs as well as or even better than STM

(��)DPL-SS, indicating that phone-like units are possibly better
for segment quantization. This is brought out more definitely with
ML segmentations. Both ML(UC)PL-SS and ML(DC)PL-SS have
significantly higher Seg-SNR than STM based segmentations (by
upto 1 dB with respect to STM(��)PL-SS and upto 2 dB with re-
spect to STM(��)DPL-SS). Thus, ML segmentations clearly out-
perform STM and ML proves to be an effective segmentation tech-

nique for realizing phone-like units which are significantly better
than diphone-like units for segment quantization. The above Seg-
SNR differences also translated very well in terms of perceptual
quality of the synthesized speech. The ML segmentation resulted
in perceptually superior speech quality, with very high intelligibil-
ity and with the speaker identity intact when compared to diphone-
like segmentation using STM.

Considering the performance on multi-speaker codebook, both
ML(UC)PL-MS and ML(DC)PL-MS have a lower Seg-SNR when
compared to their single-speaker performance (ML(UC)PL-SS and
ML(DC)PL-SS). This clearly indicates that when a test speech is
coded using a speaker codebook that matches the input speaker, a
performance gain of as much as 3dB can be accrued. This points
to the importance of handling speaker-variability for speaker - in-
dependent segment vocoder operation by means of speaker adap-
tation techniques, such as codebook adaptation.

4. CONCLUSIONS

In this paper, we have explored the effectiveness of two types
of ‘automatically derived units’, namely, diphone-like units and
phone - like units for segment quantization in a segment vocoder.
These units are obtained from three automatic segmentation tech-
niques: spectral transition measure (STM), maximum - likelihood
(ML) segmentation (unconstrained) and duration constrained ML
segmentation. We have shown that STM based diphone-like units
perform poorly in comparison to phone-like units in vocoder per-
formance. More importantly, we have shown that ML segmen-
tation based phone-like units outperforms STM based phone-like
units in terms of both segmentation match measures (with TIMIT
segmentation) and actual vocoder performance in terms of seg-
mental SNR. The proposed segment vocoder operates at high in-
telligibility retaining speaker-identity when used in single-speaker
mode.
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