
 

ABSTRACT

 

Feature representation is a very important factor that has a great
effect on the performance of speech recognition systems. In this
paper we focus on a feature generation process that is based on
the linear transformation of an original log-spectral representa-
tion. While conventional linear feature generation methods gen-
erally use objective functions that are not closely related to
recognition accuracy, our linear feature generation method
attempts to Þnd a transformation matrix that maximizes the nor-
malized acoustic likelihood of the most likely state sequences of
training data, a measure that is directly related to the classiÞca-
tion error rate in speech recognition. The transformation matrix
is generated using a gradient ascent optimization process, with
the normalized acoustic likelihood of the most likely state
sequence as the objective function. Experimental results using
the DARPA RM corpus show that the proposed method consis-
tently decreases word error rates compared to conventional linear
feature generation methods.

 

1. INTRODUCTION

 

As is the case with all pattern classiÞcation systems, perfor-
mance of a speech recognition system depends critically on the
features it uses. Features that are based on linear transformations
of log-spectral representations of speech are commonly used in
speech recognition, and some of the most popular feature sets are
obtained using the linear Mel frequency cepstral coefÞcients
(MFCC) [1], principal component analysis or Karhunen-Loeve
transformation (PCA/KLT) [2], and linear discriminant analysis
(LDA) [3][4]) procedures. These features are relatively easy to
generate, and good performance has been obtained using them. 

Despite the success of these linear feature representations, most
of them are based on heuristics, as neither the objectives of
�maximal separation� used in LDA [3][4] nor �maximum preser-
vation� in PCA/KLT [2] directly relate to our real objective of
minimal word error rates (WERs). The objective of MFCC [1] is
merely that of providing a transformation of the original log-
spectral representation that is smoother, more decorrelated, and
reduced in dimensionality. In contrast, the aim of this paper is to
derive a linear feature based on an objective which is more inti-
mately linked to the goal of minimizing recognition error rate.
SpeciÞcally, we will use as our objective the normalized acoustic
likelihood of the most likely state sequences generated from
forced alignment, a measure that can be thought of as the 

 

a pos-
teriori

 

 probability of the most likely state sequences assuming
that the 

 

a priori 

 

probabilities of the state sequences are equal.
With our objective deÞned to be this normalized acoustic likeli-

hood, we will use a gradient ascent optimization procedure to
tune a feature transformation matrix that maximizes the objective
function, and achieve our goal of minimizing the WER of the
system.

In the following section we will describe our new linear feature
generation method starting from the simple case of a single
Gaussian state output distribution, and then extend it to the case
of state output distributions that are modeled as Gaussian mix-
tures. In Sec. 3, we report our experimental results using the
DARPA Resource Management (RM) corpus, and we present
our discussion and conclusions in Sec. 4.

 

2. LINEAR FEATURE GENERATION USING 
MAXIMUM NORMALIZED ACOUSTIC 

LIKELIHOOD

 

2.1. Linear feature generation using Gaussian state 
output distributions 

 

As noted above, our feature generation method tries to Þnd the
transformation matrix that maximizes an objective function
which is closely related with the recognition accuracy of the sys-

tem. This function is the normalized acoustic likelihood  of

the most likely state sequence in the training data: 

(1)

where  is the sample of training data in frame 

 

i

 

,  is the

most likely state in frame 

 

i

 

 from the forced-alignment result, and

 

C

 

 is the total number of recognition classes. The value of the nor-
malized acoustic likelihood computed within each frame is accu-
mulated across the training data.

It can be seen from Eq. (1) that  depends on the speciÞc value

of the feature vector  in each frame and the parameters of the

model of the observation probabilities of each recognition class.

Since the training data sample  is Þxed in the original feature

space before transformation

 

, 

 

the normalized acoustic likelihood

 computed in the original feature space will depend only on

the model parameters that describe the observation probability of
each recognition class. Given the fact that the training data can
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be partitioned into recognition classes on a frame-by-frame basis,
and the parameters of the observation probability models of each
recognition class are generated using a Maximum Likelihood
(ML) estimation approach based on the training data assigned
(

 

e.g.

 

 using approaches such as Baum-Welch

 

 

 

training or

 

 

 

the

 

 K

 

-

means training algorithms),  then depends only on the parti-

tioning of the training data in the feature space before the trans-
formation. Applying a linear transform 

 

A

 

 to the original feature

space can cause both  and the new partition of the transformed

training data to change. But if we assume that the partition of the
transformed data is the same as the partition in the original feature
space (which can be easily enforced via forced alignment of the

training data), then  in the new feature space is only a function

of the transformation matrix 

 

A 

 

that can be optimized by comput-
ing its derivative with respect to the matrix 

 

A

 

.

Our method tries to Þnd the transformation matrix 

 

A

 

 which maxi-

mizes , the normalized acoustic likelihood of the most likely

state sequence in the transformed feature space as in Eq. (2):

 (2)

where

 (3)

is the transformed feature vector in frame 

 

i

 

. 

Since the closed form solution to Eq. (2) is unknown, we use iter-

ative procedure to maximize  with respect to the transforma-

tion matrix 

 

A

 

 using gradient ascent method

 

. 

 

For simplicity, we

replace  by  as our objective function

 

. 

 

The gradient of

 with respect to transformation matrix 

 

A

 

, , can

be expressed as:

(4)

where

(5)

Since  is the acoustic likelihood of recognition class 

 

j

 

based on the transformed data, it can be easily computed from the
result  of the previous iteration. The remaining term is

, the gradient of the log acoustic likelihood of

class 

 

j

 

 in the transformed data  with respect to the transforma-

tion matrix 

 

A.

 

If the acoustic likelihood of the transformed data  given class 

 

j

 

is generated from a single Gaussian probability distribution (as

described in our previous paper [5]),  can be written as:

(6)

where 

 

M 

 

is the dimensionality of the transformed data,  and

 are the transformed means and covariance of the recognition

class 

 

j,

 

 respectively:

(7)

where  and  are the mean and covariance of class 

 

j

 

 esti-

mated from the training data in the original feature space

 

.

 

If we only use the diagonal components of the covariance matrix
in our modeling, we obtain:

(8)

where ,  and  are the individual components of the

transformed feature vectors in frame 

 

i

 

, and the mean and covari-
ance of class 

 

j. 

 

We know from Eq. (3) and Eq. (7) that ,  and  are

all functions of the transformation matrix 

 

A, 

 

so their derivatives
with respect to 

 

A 

 

can be easily computed. This produces the

closed form solution for  in Eq. (8) that is stated

in the Appendix. Substituting this result into Eq. (4) and Eq. (5)

produces the closed-form solution of 

 

. 

 

This quantity is

then used as the increment in the gradient ascent approach to Þnd
the 

 

A

 

 matrix that optimizes the term of log-normalized acoustic
likelihood as our objective function.

 

2.2. Linear feature generation using Gaussian-mixture 
state output distributions 

 

Because state-of-the-art recognizers use mixtures of Gaussians as
state output distribution instead of the single Gaussian, we extend
our derivation to this case. With Gaussian mixtures as output dis-
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tributions, the likelihood of transformed feature vector  given

the state  can be written as

(9)

where  is the mixture coefÞcient for the Gaussian compo-

nent l of state j.  is the acoustic likelihood or observa-

tion probability from the individual component l, which can be
written as

(10)

From Eq. (9) and Eq. (10), it is easily seen that the term

 can be re-written as:

(11)

As reßected in Eq. (11), the gradient of the log likelihood

 in the case of Gaussian mixtures is simply a

weighted sum of the gradient of each Gaussian component within
the mixture. The only difference from the case of single-Gaussian
output distributions is that we must compute the Þrst derivative of
each Gaussian component in the mixture and take the weighted
sum of these derivatives.

3. EXPERIMENTAL RESULTS

We carried out a series of experiments using the DARPA
Resource Management (RM) database to compare the perfor-
mance of our proposed method with that of other feature genera-
tion methods. All of these experiments were conducted using the
CMU SPHINX-III speech recognition system with 3-state contin-
uous HMMs. The states of different HMMs were tied together
depending on the context information of the phone associated
with each HMM. The total number of tied states was 2000. All
features used in these experiments were generated from linear

transformations of log-spectral features. We used a bigram lan-
guage model.

In addition to the methods described in this paper, we also evalu-
ated the performance of MFCC, PCA and LDA features for com-
parison. We used a state-based class label for the class labels for
each feature frame needed to generate the transformation matrix
using the LDA method. In our new feature generation method, we
used steepest gradient ascent method as the optimization proce-
dure, using the transformation matrix obtained by LDA as the ini-
tial value. The optimization process was terminated when the
results converged. We compare results obtained using 1, 2, 4, and
8 Gaussian mixtures in the output probabilities to obtain the opti-
mal transformation matrix A. Similarly, we trained and tested sep-
arate systems using 1, 2, 4, and 8 Gaussians for the state output
distribution. The complete experimental results are reported in
Table 1. The columns of Table 1 contain results for recognition
systems that are trained and tested using 1, 2, 4, and 8 Gaussian
mixtures. The last four rows of Table 1 contain results obtained
with transformation matrices A that were optimized using 1, 2, 4,
and 8 Gaussians.

We also computed the statistical signiÞcance of the difference
between results obtained using our proposed methods and LDA,
the best-performing previous method. In each column of WERs in
Table 1, we computed the statistcial signiÞcance between the
LDA result and the result from our normalized featurse that had
been generated using the same number of Gaussian components
as the number of Gaussians per mixture used in training/testing.
The results obtained from the matched pairs method [6] are
reported in Table 2. 

4. DISCUSSION AND CONCLUSIONS

We Þrst note that our proposed method outperforms conventional
linear feature generation methods, and the improvements are sta-
tistical signiÞcant. 
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WER (%) 1 Gaus 2 Gauss 4 Gauss 8 Gauss

MFCC 10.29 8.68 7.66 8.31

PCA 8.96 7.86 7.30 7.85

LDA 8.36 7.67 6.93 7.51

A1Gauss 7.57 6.82 6.98 7.46

A2Gauss 7.62 6.69 6.50 7.33

A4Gauss 8.34 7.11 6.34 7.09

A8Gauss 8.37 7.30 6.48 6.88

Table 1: Word Error Rates for RM corpus obtained using various linear
feature generation schemes. The columns contain results for systems that
are trained and tested using 1, 2, 4, and 8 mixtures. The last four rows
contain results obtained using transformation matrices A that were
optimized using 1, 2, 4, and 8 Gaussians.

A1Gauss A2Gauss A4Gauss A8Gauss

P 0.015 0.005 0.043 0.060

Table 2: Statistical signiÞcance (P) comparing results using LDA and
results using tmaximum normalized acoustic likelihood. P was calculated
using the matched pairs test.



We also observe that the best performance in each column is
obtained when the number of Gaussians used to optimize the lin-
ear transofrmation matrix A is identical to the number of Gauss-
ians used to train and test the speech recognition system. In
general performance improves as the number of Gaussians
increases except for the case of 8 Gaussian mixtures. We believe
that this is may be a consequence of the fact that the amount of
training data in RM corpus isn�t enough to ensure components
within the 8 Gaussians mixture can be fully trained. We expect to
have better recognition performance especially in 8 Gaussians
mixture case if there are more training data available. 

While we made the assumption that the partitions of the training
data in the original and transformed feature spaces are Þxed, we
can relax this assumption using an iterative procedure, which par-
titions the training data according to the model generated from the
previous iteration. We believe that this iterative procedure will
further improve the performance of our new features.

Although our algorithm is similar in some ways to methds such as
Semi-Tied Covariance Matrices [7] or Maximum Likelihood Lin-
ear Transformation (MLLT) [8], it is different from these methods
in some ways. To improve the likelihood of the true classes in the
training data, most of those existing methods transform either the
feature vector or model parameters individually with the dimen-
sion usually unchanged before and after the transformation. In our
method, we try to Þnd a transformation matrix that transform the
data from the original feature space (e.g. log-spectral features) to
a new feature space usually with the reduced dimension to
improve the normalized acoustic likelihood of the true recogni-
tion classes in the transformed space. Because of the change of
dimension during the transformation, our algorithm must consider
the effect of transformation both on the feature vectors and model
parameters simultaneously (Since the transformation matrix A is a
non-square matrix, its transformation effect will not be cancelled
out when we compute the normalized acoustic likelihood in the
new feature space as in Eq. (6)), and Þnd the transformation
matrix which maximize the normalized acoustic likelihood with
the transformed feature vectors and the model parameters.

We also note that we can combine our new feature generation
method with existing model parameter transformation methods
(e.g. [7][8]). Once we generate the new feature space using our
method, we can apply those model parameter transformation
methods in the newly generated feature space.
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APPENDIX

 is a M by N matrix, where N and M is the dimension before and after the transformation. , which is the compo-

nent in the kth row and pth column within the matrix, can be written as Eq. (1), where ,  and  are the individual components

of the transformed feature, the mean and variance. ,  and  are the corresponding components before transformation (The

covariance matrix of state j before transformation is a full matrix).  is the (k,q) component of transformation matrix A.
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