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ABSTRACT

This paper introduces a Viterbi algorithm to obtain a sub-optimal
state sequence for trajectory-HMM, which is derived from HMM
with explicit relationship between static and dynamic features. The
trajectory-HMM can alleviate some limitations of HMM, which
are i) constant statistics within HMM state and ii) conditional in-
dependence of observations given the state sequence, without in-
creasing the number of model parameters. The proposed algorithm
was applied to state-boundary optimization for Viterbi training and
N-best rescoring. In speaker-dependent continuous speech recog-
nition experiment, trajectory-HMM with the proposed algorithm
achieved about 14% error reduction over the standard HMM with
the conventional Viterbi algorithm.

1. INTRODUCTION

Speech recognition technology has achieved significant progress
with the introduction of the hidden Markov model (HMM). Its
tractability and efficient implementations are achieved by some
assumptions: i) constant statistics within an HMM state, ii) condi-
tional independence assumption of observations given the state se-
quence. Although these assumptions make HMM practically use-
ful, they are not realistic for modeling sequences of speech spectra,
especially in spontaneous speech. To overcome the shortcomings
of HMM, a lot of alternative models, called segment models, have
been proposed, e.g., [1–9]. Although these models can improve
the speech recognition performance, they generally require an in-
crease in the number of model parameters and computational com-
plexity. Alternatively, the use of the dynamic features (delta and
delta-delta features) [10] also improves the performance of HMM-
based speech recognizers. It is a simple mechanism for capturing
time dependencies, however, it has been thought of as an ad hoc,
not an essential solution.

In [11], a trajectory model, called trajectory-HMM, was de-
rived by reformulating the standard HMM whose state output vec-
tor includes static and dynamic feature parameters. The standard
HMM with static and dynamic features allows inconsistent statis-
tics between the model parameters for static and dynamic fea-
tures. By imposing the explicit relationship between them, the
standard HMM is naturally translated into a trajectory model. The
trajectory-HMM can overcome the limitations in the standard HMM
framework without any additional parameters. In addition, trajectory-
HMM provides a computational model for coarticulation and the
dynamics of human speech. A Viterbi-type training algorithm was
also derived in [11]. However, the lack of an algorithm to ob-
tain the most likely state sequence does not permit iterating Viterbi

training procedure and designing a Viterbi decoder.
In this paper, a Viterbi algorithm to obtain a sub-optimal state

sequence for trajectory-HMM is proposed. This is the first step
for developing a Viterbi decoder based on trajectory-HMM frame-
work. The proposed algorithm is applied to state-boundary opti-
mization for Viterbi training and N-best rescoring.

The rest of this paper is organized as follows. Section 2 de-
fines the trajectory-HMM. In Section 3 the time-recursive likeli-
hood computation and a Viterbi algorithm for trajectory-HMM are
derived. Results of continuous speech recognition experiment are
shown in Section 4. Concluding remarks and future plans are pre-
sented in the final section.

2. REFORMULATING HMM AS TRAJECTORY-HMM

The output probability of a speech parameter vector sequence o =[
o�1 , o

�
2 , . . . , o

�
T

]�
for the standard HMM is given by

P(o | λ) =
∑
all q

P(o | q, λ) P(q | λ) , (1)

where q = {q1, q2, . . . , qT } is a state sequence. We assume that
the speech parameter vector ot consists of the static feature vector
ct = [ct(1), ct(2), . . . , ct(M)]� (e.g., cepstral coefficients), and dy-
namic feature vectors ∆ct, ∆2ct (e.g., delta and delta-delta cepstral
coefficients), respectively, that is ot = [c�t ,∆c�t ,∆

2c�t ]�, where the
dynamic feature vectors are calculated by

∆ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ , ∆2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ . (2)

Accordingly, when each state output probability distribution is as-
sumed to be a single Gaussian, P(o | q, λ) is given by

P(o | q, λ) =
T∏

t=1

N(ot |µqt ,Σqt ) = N(o |µq,Σq) , (3)

where µqt and Σqt are the 3M × 1 mean vector and the 3M × 3M
covariance matrix, respectively, associated with qt-th state, and

µq =
[
µ�q1
,µ�q2
, ...,µ�qT

]�
(4)

Σq = diag
[
Σq1 ,Σq2 , ...,ΣqT

]
. (5)

Conditions (2) can be arranged in a matrix form:

o = Wc, (6)
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where

c =
[
c�1 , c

�
2 , . . . , c

�
T

]� (7)

W = [w1,w2, . . . ,wT ]� (8)

wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
(9)

w(n)
t =

[
0M×M

1st
, . . . , 0M×M ,w

(n)(−L(n)
− )IM×M

(t−L(n)
− )-th

, . . . ,w(n)(0)IM×M
t-th

,

. . . ,w(n)(L(n)
+ )IM×M

(t+L(n)
+ )-th

, 0M×M , . . . , 0M×M
T -th

]�
, n = 0, 1, 2 (10)

L(0)
− = L(0)

+ = 0, and w(0)(0) = 1. Thus, P(o | q, λ) can be viewed as
a function of c as follows:

P(Wc | q, λ) = N(Wc | µq,Σq)

= Kq · N(c | c̄q, Pq) , (11)

where c̄q, Pq and Kq are given by

Rqc̄q = rq (12)

Rq = W�Σ−1
q W = P−1

q (13)

rq = W�Σ−1
q µq (14)

Kq =

√
(2π)MT |Pq|√
(2π)3MT |Σq|

· exp

{
−1

2

(
µ�qΣ

−1
q µq − r�q Pqrq

)}
. (15)

From the above expression (11), trajectory-HMM is defined :

P(c | λ) =
∑
all q

P(c | q, λ) P(q | λ) , (16)

where
P(c | q, λ) = N(c | c̄q, Pq) . (17)

In this paper, Eq. (17) is referred to as “trajectory likelihood”. In-
terestingly, the mean c̄q is exactly the same as the speech param-
eter trajectory obtained by the speech parameter generation tech-
nique (Case 1 in [12]), that is,

c̄q = arg max
c

P(o | q, λ) = arg max
c

P(Wc | q, λ) . (18)

By assuming c̄q is the mean for the spectral parameter vector se-
quence c, corresponding to an utterance, the standard HMM can
naturally be translated into a trajectory model. It is also noted that
the spectral parameter vector sequence c is modeled by a mixture
of Gaussian distributions whose dimensionality is T M, and their
covariances Pq are generally full. Because of the above character-
istics of the mean vector c̄q and covariance matrix Pq, trajectory-
HMM can avoid the limitations of HMM.

3. VITERBI ALGORITHM FOR TRAJECTORY-HMM

3.1. Time recursive likelihood computation

To compute “trajectory likelihood” directly, high dimensional lin-
ear algebra (e.g., matrix inversion, determinant, etc.) is required.
To avoid it, a time-recursive algorithm to compute “trajectory like-
lihood” is described in this section.

From Eq. (11), “trajectory likelihood” is given by

P (c | q, λ) = K−1
q · P (o | q, λ) . (19)

In Eq. (15), although
∣∣∣Σq

∣∣∣ and µ�qΣqµq can be computed time-
recursively, it is difficult to compute

∣∣∣Pq

∣∣∣ and r�q Pqrq recursively
because of the temporal full-covariance matrix Pq. However, by
using the special structure of Pq, “trajectory likelihood” can be
computed in a time-recursive manner.

First, when ∆ct and ∆2ct are computed as regression coeffi-
cients from {ct−L, . . . , ct+L}, Rq becomes a (4L + 1)-diagonal sym-
metric positive define matrix. Accordingly, Rq can be decomposed
by Cholesky decomposition :

Rq = U�q Uq , (20)

where Uq is an upper (2L+1)-band triangular matrix. From Eq. (20),∣∣∣Pq

∣∣∣ can be rewritten as

∣∣∣Pq

∣∣∣ = ∣∣∣Rq

∣∣∣−1
=
∣∣∣U�q Uq

∣∣∣−1
=
∣∣∣Uq

∣∣∣−2
=

T∏
t=1

∣∣∣U(t,t)
qt+L

∣∣∣−2
, (21)

where qt+L = {q1, . . . , qt+L}. Since U(t,t)
qt+L depends only on the

state sequence from time 1 to t + L,
∣∣∣Pq

∣∣∣ can be computed time-
recursively.

Secondly, from Eqs. (12), (13), and (20), r�q Pqrq can be rewrit-
ten by

r�q Pqrq = r�q P�q RqPqrq = c̄�q U�q Uq c̄q (22)

= g�q gq

(
g = Uqc̄q = U−1

q rq

)
(23)

=

T∑
t=1

[
g(t)

qt+L

]� · g(t)
qt+L

(24)

where gq is a vector computed from Uq and rq by forward substi-
tution. Since g(t)

qt+L depends only on the state sequence from time 1
to t + L, r�q Pqrq can be also computed time-recursively.

As a result, “trajectory likelihood” (Eq. (17)) can be computed
time-recursively as follows :

P (c | q, λ) =
T∏

t=1

1

K(t)
qt+L

· P (ot | qt, λ) , (25)

where

K(t)
qt+L
=

√
(2π)M

∣∣∣U(t,t)
qt+L

∣∣∣−1

√
(2π)3M

∣∣∣Σqt

∣∣∣ exp

{
−1

2

(
µ�qt
Σ−1

qt
µqt −

[
g(t)

qt+L

]�
g(t)

qt+L

)}
.

(26)

3.2. Viterbi algorithm for trajectory-HMMs

In the trajectory-HMM framework, observations and the given state
sequence depend on each other because the temporal covariance
matrix Pq is full. Accordingly, it is difficult to obtain the most
likely state sequence for trajectory-HMM by dynamic program-
ming. In this section, we describe an algorithm to obtain a “sub-
optimal” state sequence based on dynamic programming. In this
algorithm, the state qt−D is determined at time t, according to “tra-
jectory likelihood” for qt+L. It can be viewed as a Viterbi algorithm
with D-frame delayed decision.

The proposed algorithm illustrated in Fig. 1 involves the fol-
lowings:
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s2

s1

s4

s3

s2

s1

δt
(
qt+L

t−D

) qt+L
t−D

t − D

Fig. 1. An overview for proposed Viterbi algorithm (D = 2, L = 1)

0) Initialize : t = 1 ; ∀q1+L
1−D

δ1

(
q1+L

1−D

)
= πq1 b (q1+L)

ψ1

(
q1+L

1−D

)
= 0

1) Iterate : t = 2, . . . ,T ; ∀qt+L
t−D

δt

(
qt+L

t−D

)
= max

qt−D−1

[
δt−1

(
qt+L−1

t−D−1

)
aqt−1 , qt

]
b(qt+L)

ψt

(
qt+L

t−D

)
= arg max

qt−D−1

[
δt−1

(
qt+L−1

t−D−1

)
aqt−1 , qt

]

2) Finish :

P̂ = max
qT+L

T−D

[
δT

(
qT+L

T−D

)]

q̂T+L
T−D = arg max

qT+L
T−D

[
δT

(
qT+L

T−D

)]

= {q̂T−D, . . . , q̂T+L}

3) Back track : t = T, . . . ,D + 2

q̂t−D−1 = ψt

(
q̂t+L

t−D

)
q̂t+L−1

t−D−1 = {q̂t−D−1, . . . , q̂t+L−1}

where πq1 is an initial state probability of state q1, aqt−1 ,qt is a state
transition probability from qt−1 to qt, qt+L

t−D = {qt−D, . . . , qt+L}, and
b (qt+L) is given by

b(qt+L) = K(t)
qt+L
· P (ot | qt, λ) . (27)

When D is equal to T , the most likely state sequence can be
obtained by the above algorithm. Although the proposed algo-
rithm with larger D can obtain more likely state sequence, it re-
quires huge amount of computational cost. Hence, D have to be
set to a proper value balancing its performance and computational
complexity.

It is generally considered that the coarticulation affect neigh-
boring frames within 100–200 ms. This indicates that optimal state
sequence is probably obtained by the proposed algorithm when D
is set to larger than 10 for 10-ms frame shift.
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Fig. 2. Average log “trajectory likelihood” per frame for the stan-
dard HMM segmentation and state sequences obtained by the pro-
posed algorithm.

4. EXPERIMENT

4.1. Experimental conditions

We used phonetically balanced 503 sentences uttered by a male
speaker MHT from the ATR Japanese speech database b-set. The
450 sentences were used for training monophone standard HMMs
and trajectory-HMMs. The remaining 53 sentences were used for
testing. Speech signals were sampled at 16 kHz and windowed
by a 25.6-ms Blackman window with a 10-ms shift, and then mel-
cepstral coefficients were obtained by a mel-cepstral analysis tech-
nique . Feature vector consists of 19 mel-cepstral coefficients in-
cluding the zeroth coefficient, their delta and delta-delta coeffi-
cients. We used 3-state left-to-right with no skip HMM structure
for modeling 36 Japanese phonemes. Each state output probabil-
ity distribution is represented by a single Gaussian with diagonal
covariance matrix.

4.2. Experimental results

First, we evaluated the performance of the proposed Viterbi algo-
rithm in the likelihood of the obtained state sequence. Figure 2
shows the average log “trajectory likelihood” per frame of the ob-
tained state sequence for an utterance included in the training data.
In this figure, “HMM” means that the standard HMM segmenta-
tion was used for state sequence q, and “D = 2, . . . , 10” mean that
the state sequences were obtained by the proposed algorithm. In
this experiment, standard HMMs were used for acoustic models.
It shows that the proposed algorithm could obtain more likely state
sequence than the standard HMM segmentation. Furthermore, as
D increased, “trajectory likelihood” was converged. When D was
greater than 5, further likelihood improvement was not achieved.
It suggests that the proposed algorithm with D = 5 can obtain ap-
proximately optimal state sequence.

Secondly, the proposed algorithm was applied to state-bound-
ary optimization in Viterbi training procedure. After obtaining the
state sequences by the proposed algorithm, model parameters were
updated by formulas derived in [11] according to the obtained state
sequences. This procedure was iterated several times. Table 1
shows the average log “trajectory likelihood” per frame for whole
training data. In Table 1 and 2, “Iteration 0” means that initial
models were used. In this experiment, the average log likelihood
of the standard HMM segmentation for whole training data was
6.873. These results show that the proposed algorithm could obtain
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Table 1. Average log “trajectory likelihood” per frame of the
trained trajectory-HMMs for whole training data

Iteration
0 1 2 3 4

D = 2 8.112 14.76 15.01 15.08 15.13
D = 3 8.501 14.93 15.17 15.28 15.32
D = 4 8.642 15.01 15.26 15.36 15.40
D = 5 8.699 15.04 15.30 15.39 15.42

Table 2. Phoneme error rate (%) for iteratively trained trajectory-
HMMs (the number of N-best candidates was 20).

Iteration
0 1 2 3 4 5

D = 2 20.1 18.8 18.5 18.8 18.8 18.4
D = 3 19.5 18.6 18.7 18.6 18.8 18.8
D = 4 19.7 18.1 18.2 18.7 18.8 18.5
D = 5 19.5 18.1 18.5 18.5 18.6 18.6

more likely state sequence than the standard HMM segmentation.
In addition, iterative training improved the model likelihood for
training data.

Thirdly, trained trajectory-HMMs were evaluated in speaker-
dependent continuous phoneme recognition experiments. First, an
N-best list was generated for each test utterance by using the HTK
Viterbi decoder with the phonotactic constraints of phoneme se-
quences in Japanese. For N-best list generation, initial models
were used. Then, each candidate was re-segmented by the pro-
posed algorithm and rescored with the “trajectory likelihood”. The
proposed algorithm with the same D were used for both training
and re-segmentation. The phoneme error rate for the baseline sys-
tem based on the standard HMM was 20.1%.

Table 2 shows the phoneme error rates for iteratively trained
trajectory-HMMs. Recognition results were shown in phoneme er-
ror rates. When trajectory-HMMs trained by single Viterbi train-
ing iteration with the proposed algorithm setting D to 4 or 5 were
used, about 10% relative error reduction was achieved over the
standard HMM. On the other hand, recognition performance did
not improve by iterative training. This suggests that iterative train-
ing causes over-fitting to training data.

Table 3 shows the phoneme error rates for the several numbers
of N-best candidates. In this experiment, trajectory-HMMs trained
by Viterbi training with single iteration were used. As the number
of N-best candidates increased, the recognition performance im-
proved significantly. When 200-best candidates were used, about
14% relative error reduction over the standard HMM was achieved.
It indicates that if we search wider space by implementing a Viterbi
decoder based on the proposed algorithm, it is expected that larger
improvement can be achieved.

5. CONCLUSION

This paper describes a Viterbi algorithm to obtain a sub-optimal
state sequence for trajectory-HMM. It can be considered as a Viterbi
algorithm with D-frame delayed decision.

Table 3. Phoneme error rates (%) for the several number of N-best
candidates.

Number of candidates
20 30 100 200

D = 2 18.8 18.7 18.2 18.6
D = 3 18.6 18.4 17.9 17.8
D = 4 18.1 17.8 17.6 17.5
D = 5 18.1 17.8 17.5 17.2

It was applied to state-boundary optimization for Viterbi train-
ing and N-best rescoring. In speaker-dependent continuous speech
recognition experiment using rescoring scheme, about 14% rela-
tive error reduction over the standard HMM with the conventional
Viterbi algorithm was achieved.

Future work includes the implementation of Viterbi decoder
based on proposed algorithm and derivation of a Baum-Welch-type
training algorithm.
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