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ABSTRACT
For multi-stream HMMs that are widely used in audio-
visual speech recognition, it is important to automati-
cally and properly adjust stream weights. This paper pro-
poses a stream-weight optimization technique based on
a likelihood-ratio maximization criterion. In our audio-
visual speech recognition system, video signals are captured
and converted into visual features using HMM-based tech-
niques. Extracted acoustic and visual features are concate-
nated into an audio-visual vector. A multi-stream HMM is
obtained from audio and visual HMMs. Experiments are
conducted using Japanese connected digit speech recorded
in real-world environments. Applying the MLLR (maxi-
mum likelihood linear regression) adaptation and our opti-
mization method, we achieve a 29% absolute accuracy im-
provement and a 76% relative error rate reduction compared
with the audio-only scheme.

1. INTRODUCTION

Automatic speech recognition (ASR) systems are expected
to play important roles in user-friendly human-machine in-
terfaces in the near future, such as under ubiquitous com-
puting environments. Although high recognition accuracy
can be obtained for clean speech, accuracy dramatically de-
creases in noisy conditions. Increasing robustness is one
of the most important challenges currently for ASR. Multi-
modal ASR which jointly uses acoustic and visual features
has recently become very attractive for this purpose [2, 3, 4].
In most of the multi-modal ASR methods, multi-stream
HMMs are used in order to effectively combine acoustic and
visual information. An audio-visual multi-stream HMM has
audio and visual feature streams, and an audio-visual likeli-
hood is computed as a summation of audio and visual like-
lihoods weighted by stream weights. Although the stream
weights need to be properly estimated according to noise
conditions, theoretically they cannot be determined based
on the maximum likelihood criterion. Therefore, it is very
important to build an efficient stream-weight optimization
technique to achieve high recognition accuracy.

This paper proposes an automatic stream-weight opti-
mization method for audio-visual speech recognition based

on a likelihood-ratio maximization criterion, in which dif-
ferences of log likelihood values obtained from the first and
other hypotheses are maximized. We evaluate the robust-
ness of our proposed method by conducting experiments
using real-world audio-visual data.

In Section 2, we explain the proposed stream-weight op-
timization method. Our ASR system is described in Section
3, and the experimental setup and results are described in
Section 4. Finally, Section 5 concludes this paper.

2. STREAM WEIGHT OPTIMIZATION

2.1. Multi-stream HMMs

For our method, we use multi-stream HMMs consisting of
audio and visual streams. As described in the previous sec-
tion, multi-stream HMMs have the advantage that they can
effectively combine audio and visual information. The log
likelihood bw(Ot) of an audio-visual feature Ot for a word
w is represented by the following expression (1):

bw(Ot) = λAwbAw(OAt) + λV wbV w(OV t) (1)

where t is time, and bAw(OAt) and bV w(OV t) are likeli-
hoods for an audio feature OAt and a visual feature OV t,
respectively. λAw and λV w are audio and visual stream
weight factors, respectively, that are constrained by the fol-
lowing restriction (2):

λAw + λV w = 1 , 0 ≤ λAw, λV w ≤ 1 (2)

2.2. Optimization method

As described above, stream weights cannot be determined
on the maximum likelihood criterion, in contrast with other
model parameters such as mean or variance values of Gaus-
sian components. In the recognition process, these weights
need to be estimated properly according to the noise condi-
tion in order to achieve high recognition accuracy. Thus, we
propose an automatic stream-weight optimization method
based on the likelihood-ratio maximization criterion.

Let’s denote an output word from a decoder by w t and
a correct word by w̄t at time t. Then the following equation
(3) is obtained:

bwt(Ot) ≥ bw(Ot) (3)
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where w is any word in the dictionary for recognition W
(|W | = N). A recognition error, that is w̄t �= wt, is caused
by mismatch between training and testing conditions, mak-
ing the likelihood of an incorrect word w t larger than that of
the correct word. However, if a majority of the spoken utter-
ances for adaptation are correctly recognized, by adjusting
stream weight factors to maximize the difference between
the likelihood values obtained from the first and other hy-
potheses, recognition errors can be expected to decrease. In
our method, the set of audio stream weights Λ = {λAw} are
adjusted to maximize the following equation (4):

L(Λ) =
T∑

t=1

∑
w∈W

{
bwt(Ot) − bw(Ot)

}2

(4)

where T is the total length of the adaptation data. For any
λAwr ∈ Λ, the partial derivative of L(Λ) should be zero:

∂L(Λ)
∂λAwr

= 0 (5)

Then the variation of λAwr , denoted by ∆λAwr , can be cal-
culated as follows:

∆λAwr =
A

B
(6)

A =
T∑

t=1
wt=wr

{
Nbwr(Ot) −

∑
w∈W

bw(Ot)
}

+
T∑

t=1
wt �=wr

{
bwr(Ot) − bwt(Ot)

}
(7)

B =
T∑

t=1
wt=wr

Ndwr (Ot) +
T∑

t=1
wt �=wr

dwr (Ot) (8)

dw(Ot) = bAw(OAt) − bV w(OV t) (9)

All λwr values are updated at once after obtaining all the
variations. A set of the optimized stream weights Λ̂ is ob-
tained after iterating the process.

3. AUDIO-VISUAL ASR SYSTEM

3.1. Feature extraction

Figure 1 shows the structure of our audio-visual ASR sys-
tem. The speech signal is recorded at a 16kHz sampling
rate, and a speech frame with a length of 25ms is extracted
at every 10ms. Each frame is converted into an acoustic
vector consisting of 12-dimensional mel-frequency cepstral
coefficients (MFCCs), normalized log energy, and their first
and second order derivatives. The cepstral mean normal-
ization (CMN) technique is applied to the MFCCs, and the
static log energy is removed. As a result, a 38-dimensional
acoustic feature is obtained.

Video sequences are captured at 15Hz sampling rate
with a resolution size of 360×240. At first, a contour extrac-
tion filter is applied to an input image. A smooth contour is
modeled by the following equation (10) and positive values
Ai and Bi are simultaneously estimated for each column.

vi(y) �
∣∣∣Ai(y − y0)e−Bi(y−y0)

2
∣∣∣ (10)

where i is the column number, vi(y) is a contour value at
(i, y) and y0 is the center-of-gravity point for the i-th col-
umn. Since an integral value of vi(y) becomes large when
a part of a person’s lips is contained in the column, the hor-
izontal central coordinate of a mouth, denoted by C, is ob-
tained by the following equation (11):

C =
W−1∑
i=0

i ×
∫ ∞

−∞
vi(y)dy �

W−1∑
i=0

i × Ai

Bi
(11)

Next, an equalization filter and a HSI (Hue, Saturation and
Intensity) conversion are applied to the input image. For
each column of the image, an 8-dimensional vector, con-
sisting of sine and cosine values of hue, saturation, in-
tensity and their derivatives, is generated by scanning the
column from top to down. The width and height of the
mouth are measured using these vectors by applying HMM-
based forced-alignment and one-path-DP-matching tech-
niques. Figure 2 illustrates a summary of the algorithm. The
following five HMMs having three states and eight Gaus-
sian pdfs in each state are built using the Baum-Welch algo-
rithm: upper-skin (US), upper-lip (UL), mouth (M), lower-
lip (LL) and lower-skin (LS) HMMs. The height h of the
mouth is obtained from the positions in the C-th column
corresponding to the beginning and ending of the mouth
HMM given by the forced alignment technique. In order
to detect the mouth and lips, the following three scores
are computed for each column using the HMMs described
above; likelihoods for (a) having lips and a mouth (US →
UL → M → LL → LS), (b) having lips (US → UL → LL
→ LS), and (c) having skin only (US → LS). The one-path
DP matching is performed from left to right in the image
in order to find the path which maximizes the summation
of the scores. The width w of the mouth is obtained from
a detected mouth area (a) by using a back track technique.
Additionally, by applying a B/W filter to the area between
the upper and lower lips in the C-th column, teeth informa-
tion t is obtained by counting detected white pixels. Finally,
a 9-dimensional visual feature vector consisting of a param-
eter set (h, w, t) and its first and second order derivatives is
obtained.

After normalizing the dynamic range, the visual vectors
are interpolated from 15Hz to 100Hz by a 3-degree spline
function so that the frame rate synchronizes with that of the
audio vectors. The acoustic and visual features are concate-
nated to build a 47-dimensional audio-visual vector.
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Fig. 1. Proposed audio-visual speech recognition system.
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Fig. 2. A summary of measuring width and height of a mouth
using HMMs.

Table 1. Recognition conditions according to audio-visual fea-
tures, MLLR, and stream-weight optimization.

Parameter MLLR Optimization
(1) Audio-only no no
(2) Audio-visual no no
(3) Audio-visual no yes
(4) Audio-visual yes no
(5) Audio-visual yes yes

3.2. Modeling

A triphone HMM having three states and two mixtures in
each state is used in our system. The audio and visual
HMMs are built sequentially [6]. First, an audio HMM is
trained for the acoustic features, and the phoneme segment
information (labels) for the training data is obtained by the
forced-alignment technique using the audio HMM. A visual
HMM is then built for visual features using the phoneme la-
bels. Finally, the audio and visual HMMs are combined to
build an audio-visual multi-stream HMM.

Table 2. The highest recognition accuracy in each experimental
condition.

(1) (2) (3) (4) (5)
62.0% 64.2% 76.1% 85.2% 91.0%

4. EXPERIMENTS

4.1. Database

Two audio-visual speech databases were collected for train-
ing and testing [5]. The first database for training was col-
lected in a clean condition. This database consisted of 2,750
utterances by 11 speakers, each uttering 250 sequences of 2-
6 connected Japanese digits. The second database for test-
ing was collected in a driving car on expressways. This con-
sisted of 690 utterances by six speakers, each uttering 115
sequences. There exist several kinds of acoustic and visual
noises in this database: engine sounds, wind noises, blinker
sounds as acoustic noises, and extreme brightness changing,
head shaking on bumpy roads and slow car-frame shadow
movements as visual noises.

4.2. Adaptation and stream-weight optimization

Table 1 shows the experimental conditions. Experiments
were conducted using only acoustic features as a baseline
and then using audio-visual features for evaluating the pro-
posed method. When using audio-visual vectors, a com-
mon audio and visual stream weight was first applied to
all the HMMs. We applied either the MLLR adaptation
technique [1] or our proposed stream-weight optimization
method, or both of them. The MLLR adaptation was con-
ducted only for the audio stream in an unsupervised batch
adaptation manner to adapt mean and variance values. Op-
timized stream weights were obtained with 50 iterations us-
ing the whole testing data and time-aligned labels gener-
ated from the recognition results using the common stream
weight. In the case of condition (5), the MLLR adaptation
was applied first, followed by the stream-weight optimiza-
tion.
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Fig. 3. Digit recognition accuracy by each method as a function
of the initial audio stream weight.

Table 3. Comparison of the number of each class of recognition
errors: deletion, substitution and insertion.

Deletion Substitution Insertion
(1) 226 613 211
(3) 162 277 149

4.3. Experimental results

Figure 3 shows the recognition results as a function of the
initial audio stream weight used in the iterative process of
stream-weight optimization. The horizontal axis indicates
the initial audio stream weight, and the vertical axis indi-
cates the digit recognition accuracy. Table 2 shows the high-
est recognition accuracy by each method. By comparing the
results in conditions (1) and (2), it can be seen that approxi-
mately 2% absolute improvement was achieved by combin-
ing the visual information. By applying the stream-weight
optimization (3), a 14% improvement of digit accuracy from
the baseline and a 37% relative reduction of digit error rate
were obtained. These results indicate the effectiveness of
the proposed stream-weight optimization method for multi-
stream HMMs. Comparing the results in conditions (4) and
(5), a 6% accuracy improvement and roughly 39% error re-
duction were achieved by the stream-weight optimization.
Based on this result showing that approximately the same
error reduction can be achieved irrespective of whether the
MLLR adaptation is applied or not, it can be concluded
that the stream-weight optimization method is effective in
a wide range of recognition conditions. Finally, compar-
ing the results in conditions (1) and (5), a 29% accuracy
improvement and a 76% error reduction were achieved by
combining the visual information and applying both the
MLLR adaptation and the stream-weight optimization. Fig-
ure 3 also indicates that results with both the MLLR and the
stream-weight optimization (5) are not strongly affected by
the initial stream weight. This means that stable high recog-
nition accuracies can be expected by applying the MLLR
and the weight optimization methods.

A supplementary analysis was conducted to analyze fac-
tors of improvements. Table 3 shows the number of recog-
nition errors in the conditions of (1) and (3) categorized into
deletion, substitution and insertion errors. The results show
that substitution errors are significantly reduced by using vi-
sual features together with the weight optimization method,
which means that discrimination power is dramatically in-
creased by the proposed method.

5. CONCLUSIONS

This paper has proposed an automatic stream-weight opti-
mization method for multi-modal speech recognition using
multi-stream HMMs, and has evaluated the robustness of
the proposed method against both acoustic and visual noises
using real-world data. Our proposed method in combination
with an MLLR unsupervised adaptation achieved a 29% ab-
solute improvement of digit accuracy and a 76% relative re-
duction of digit error rate in comparison with the audio-only
baseline method.

Our future works include: (1) comparing the perfor-
mance of the proposed method with other methods under
real environments, (2) testing of proposed techniques for
larger data sets or more difficult tasks, and (3) investiga-
tion of fusion algorithms and audio-visual synchronization
methods.
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