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ABSTRACT

In this paper we address the problem of the design of a transmit-
ter in a Multi-Input-Multi-Output (MIMO) space diversity system.
We consider a design which is robust to errors in the channel esti-
mate available at the transmitter. The design is based on the min-
imization of the necessary transmit power while guaranteeing a
minimum and specified Quality of Service (QoS) in terms of Sig-
nal to Noise Ratio (SNR) with a certain probability. According
to this objective, the transmitter exploits all the eigenmodes of the
MIMO channel estimate, distributing the transmit power in a ro-
bust way among the channel modes by using orthonormal temporal
signatures. In order to guarantee a full rate transmission, the or-
thonormal temporal signatures designed for real constellations in
Orthogonal Space Time Block Codes (OSTBC) are used, leading
to a system structure based on the combination of OSTBC and or-
thogonal weighted beamforming.

1. INTRODUCTION

In last years, much attention has been paid to the use of antenna
arrays to improve the quality and the rate of transmission and
to cope with the impairments produced by the scatterer wireless
channel. There exist two different groups of techniques, those
based on space-time codes when no Channel State Information
(CSI) is available at the transmitter, such as [1] and [2], among
others, and those based on linear pre-processing or beamforming
when the transmitter knows the channel response ([3] [4]). In a re-
alistic deployment, only a channel estimate is available, and there-
fore, the already proposed techniques should be redefined in order
to take into account the errors in the estimate, leading to the so
called robust techniques.

Most of the already known robust designs are based on a sta-
tistical or Bayesian approach, in which the mean value of a good-
ness function averaged over the statistics of the real channel condi-
tioned to the channel estimate is maximized ([5] [6]). One feature
of this kind of techniques is that, although they optimize the mean
behaviour of the system, no minimum quality of service can be
guaranteed to the user. In a packet transmission network, this pa-
rameter has a special relevance, due to the fact that a packet has to
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be accepted or disregarded. Obviously, a technique able to estab-
lish a relationship between a minimum quality of transmission for
accepting a packet and the associated probability is desired.

In this paper it is proposed a robust design that takes into ac-
count explicitly the presence of errors in the Multi-Input-Multi-
Output (MIMO) channel estimate available at the transmitter. All
the eigenmodes of the channel estimate are used, and the available
power is distributed in a robust way among these modes accord-
ing to a criterion that maximizes the Signal to Noise Ratio (SNR)
for the worst real channel that can be found given the channel es-
timate, that is, a maximin robust approach [7] is taken instead of
the classical Bayesian philosophy. Other important worst-case op-
timization problems have been solved previously, such as in [8].

This paper is organized as follows. In Section 2 the system
and signal models are presented. Sections 3 and 4 present the non-
robust and the maximin robust designs, respectively. Finally, in
Section 5 some simulation results and conclusions are shown.

2. SYSTEM AND SIGNAL MODELS

We consider the transmission through a flat fading spatially uncor-
related Rayleigh MIMO channel with �� transmit and �� receive
antennas. The ��� ��th component in the matrix � � �� �����

represents the gain factor between the �th transmit and the �th re-
ceive antenna. All the components in the MIMO channel matrix
are i.i.d. complex and circularly symmetric Gaussian variables
with zero mean and variance ���. At the transmitter only a chan-
nel estimate �� is available, corresponding to the following model:�� � � � �, where � represents the error in the channel esti-
mate, and is composed by i.i.d. complex and circularly symmetric
Gaussian variables with variance ��� and independent from�. Ac-
cording to this distribution, it is easy to verify that the real channel
conditioned to the channel estimate follows a Gaussian law:
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where vec��� represents the operator that stacks columnwise all the
columns of a matrix, and � is the Minimum Mean Square Error
(MMSE) Bayesian estimate of the channel. ��� represents this

Bayesian channel estimate, i.e., ��� �
SNRest

��SNRest
��.



The transmission scheme is based on a matrix modulation.
That means, that if a symbol ���� has to be transmitted, then the
following signal is transmitted �� ��� � �����, where the ma-
trix � � �� ����� contains the factors that multiply the symbol
���� before the signal is transmitted through the �� transmit an-
tennas during �� channel uses or periods of time. The transmit
power constraint can be formulated in terms of the matrix � as
����

�
� tr

�
�
�
�
�
� �� . According to this matrix modulation

scheme, the received samples at all the receive antennas during the
�� periods of time corresponding to the transmission of ���� can
be expressed as: ���� � ������ ����� � �� ����� , where
���� models the AWGN contribution, with variance ��� .

We assume that the receiver knows perfectly which is the trans-
mitter, i.e., the matrix �, and the channel realization �. Accord-
ing to this, the optimum receiver is based on the matched filter,
which extracts the following sufficient statistic ���� in order to
carry out the detection: ���� � tr
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SNR is maximized by using this receiver, leading to the following

expression: SNR �
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�
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�
. In this paper we force

the matrix � to have the following structure, which is able to ac-
commodate several transmission architectures, as it will be shown
in other sections in this paper:
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This signal models consists in a transmission through the dif-
ferent eigenmodes of the estimated channel. This transmission is
decoupled by means of using a set of �� orthonormal temporal
signatures �	������� (	� � �� ����) which are collected in the uni-
tary matrix � �

�
	� � � � 	��

�
. The powers ��������� are

responsible for giving a relative importance to the different esti-
mated eigenmodes. It can be easily shown that the power con-
straint ����

�
� �� can be reformulated as

	��
��� �� � �. Ac-

cording to this signalling method, it can be shown that the SNR

can be expressed as SNR � ��
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�
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�
, which is

independent of the unitary matrix �.
As shown in this signal model, �� channel uses or periods of

time are needed to transmit one symbol. Obviously, this implies
a reduction of the useful signal rate by a factor �� . If a full rate
system is desired, then �� different symbols ������������ have to
be transmitted simultaneously, according to the following scheme:
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that is, the same importance is given to the estimated eigenmodes
for all the symbols, but different temporal signatures are applied.
Obviously, the problem consists in decoupling the detection of the
symbols at the receiver without decreasing the SNR. For real con-
stellations, this can be done by using the unitary matrices deduced
for Orthogonal Space Time Block Coding (OSTBC) ([1] [2]). For
the case of complex symbols, only a 1/2 rate transmission can be
achieved for any number of transmit antennas. In the following

OSTBC
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Fig. 1. Transmitter architecture combining OSTBC and weighted
beamforming.

sections we assume BPSK symbols and all the analysis is carried
out as if only one symbol is transmitted.

To summarize, the transmitter architecture proposed in this pa-
per is based on the concatenation of an OSTBC and a set of ��
beamformers (similarly to [9] and [10]), each one corresponding
to an eigenmode of the estimated MIMO channel and applied to an
output of the OSTBC. The set of powers ��������� are responsible
for scaling the outputs of the OSTBC (see Fig. 1). In the following
sections, it is shown how to design and calculate the set of powers
according to different criteria, such as a maximin robust technique.

3. NON-ROBUST BEAMFORMING

In this section we focus the attention on the design of a transmit-
ter in which it is assumed that the available channel estimate is
perfect, that is, SNRest � � and � � �� � ���, leading to
a non-robust classical design. Taking this into account, the SNR
during the design stage can be assumed to be equal to:
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According to this expression, the optimization problem can be
formulated as follows:
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s.t.
	��
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The solution of this constrained optimization corresponds to
�� � � and �� � �� �	 
 �, i.e., a transmission scheme in which
only the first output of the OSTBC block is transmitted through the
application of the maximum eigenmode ��� of the MIMO channel
estimate. This is equivalent to classical beamforming in which no
space-time coding is applied, due to the fact that in conventional
OSTBC the first output is equal to the original symbol stream.

4. THE MAXIMIN ROBUST APPROACH

In this section we propose a design of the power parameters ����
under a maximin perspective [7]. This design criterion takes into
account that there is some error in the available channel estimate at
the transmitter. Due to the presence of the error, the performance



in terms of SNR can decrease if the transmitter is designed accord-
ing to the channel estimate without taking into account this error.
A possible strategy that is less sensitive to this effect consists in
applying a maximin approach in the design. In this design the ob-
jective is to look, given a power distribution, for the worst channel

�� within an uncertainty area �
����

�
around the channel esti-

mate ���, i.e., to look for the real channel that minimizes the SNR
for a concrete power distribution. Once that this worst channel is
found, the second step consists in maximizing the SNR for this
worst channel by designing the power parameters adequately. Be-
fore presenting the design, let us show some useful definitions:
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where in this case the uncertainty area �
����

�
is represented by

the Euclidean norm represented by ���� and �Æ�, corresponding
to a sphere centered at the Bayesian channel estimate ��� and a
radius equal to

�
�, and the cost function ���� is proportional to

the SNR. According to this, the maximin optimization and design
problem for a concrete channel estimate can be formulated as:
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In (10) there is a quadratic term on the error in the channel
estimate Æ. For usual values of SNRest this term is negligible, and
therefore, ���� can be simplified as (note that the first term in (10)
has been rewritten in terms of the eigenvalues ����� of ���

�
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where the matrix �� is constructed by choosing only the rows
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power parameters consists in finding the channel in the uncertainty

area�
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�
or, equivalently, the vector Æ such that �Æ�� � �, that

minimizes the modified cost function �����. As the modified cost
function depends linearly on Æ, it is easy to verify that the mini-
mization is achieved when �Æ�� � �. Finally, the vector Æ min-
imizing ����� subject to the norm constraint is Æ� � 	�� ��

����
.

According to this result, the function to be maximized with respect
to the power parameters ���� is:
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This is a convex optimization problem that can be solved us-
ing iterative and powerful algorithms such as the “interior point
method” [11]. Once the optimum powers ����� have been found,
the designer can calculate which is the required transmit power
so as to guarantee the desired SNR� for any channel in the uncer-

tainty area as: 
 �� � SNR�
��
�

��
�
	����

�
�
Æ��

(i.e., SNR� represents

the minimum Quality of Service (QoS) desired by the user).

4.1. Uncertainty Area

Up to this point it has been assumed that the parameter � is known.
In this subsection two possibilities are proposed to calculate the
size of the uncertainty area.

4.1.1. Outage Probability

As it has been shown in Sec. 2, the error Æ � � 	 ��� in the
Bayesian channel estimate ��� is a white properly Gaussian dis-

tributed vector with zero mean and covariance � �
��
�

��SNRest

.

Consequently, �Æ�� follows a chi-square distribution with �����

degrees of freedom and normalized variance ��
�

����SNRest�
. By

means of this, a minimum quality can be guaranteed to the user
or communication by relating the outage probability 
out of hav-
ing a SNR higher than or equal to the desired one SNR�, and the
size of the uncertainty area as � � ��� �
out�, where ���� is the
Cumulative Density Function (CDF) of the chi-square distribution.

The main problem of this technique is that for high outage
probabilities, the errors in the channel estimate may be too high
so as to consider the first order approximation of the cost func-
tion ���� (see eq. (14)). Just to clarify this idea, if � 
 ������,
then the worst channel in the unvertainty area would be �� � �,
i.e. Æ� � 	���, however the first order approximation would state
that the worst channel would correspond to Æ� � 	�� ��

����
. In

this case it is quite difficult to guarantee a minimum SNR to the
user; consequently, a more reasonable option would consist in not
transmitting any symbol, instead of increasing the transmit power.

4.1.2. Adhoc Approach

In order to solve the problem of having very large uncertainty ar-
eas that contain �� � � as the worst channel, it is possible to
calculate the parameter � without having any relationship with the
outage probability. In this case, we propose the following adhoc
rule: � � �

��SNRest
������. In this design, the channel � � �

does not belong to the uncertainty area. Besides, as SNRest in-
creases, the size of the uncertainty area decreases, as expected. It
can be shown that, usually, for this kind of uncertainty areas, the
first order approximation presented in eq. (14) is quite accurate.

5. SIMULATION RESULTS AND CONCLUSIONS

In this section we present several results corresponding to the ap-
plication of the already presented robust design, comparing the
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hoc approach), non-robust beamforming and OSTBC

results with other classical techniques such as OSTBC and the
non-robust beamforming approach. In all cases, the objective is to
evaluate which is the minimum transmit power to guarantee a min-
imum QoS in terms of a target SNR�, that is, in the simulations it is
calculated how much power is necessary at the transmitter so that
the communication has a SNR higher than or equal to SNR� for
any channel realization within an uncertainty area around the chan-
nel estimate. In all the simulations it is assumed that SNR�=10 dB,
�
�

� � �, and that the signal and noise power are ��� � �
�

� � �.
In Fig. 2 the CDF’s of the minimum transmit power required

to guarantee SNR � SNR� for any channel in the uncertainty area
around the estimate are presented. The considered techniques are
the maximin robust design using the adhoc uncertainty area pre-
sented in 4.1.2, the non-robust beamforming and the OTSBC ap-
proaches for a system with �� � �� � � antennas. As it can be
seen, the minimum required transmit power for the robust design is
lower than the other techniques as the estimation SNR decreases,
as expected. Besides, for very low estimation SNR the OSTBC
solution may need less power than the non-robust approach.

In Fig. 3 it is represented the mean value of the minimum
transmit power to obtain a minimum QoS, as specified in the pre-
vious figure. In this case, the outage probability approach has been
taken for two different antennas configurations: �� � �� � �

and �� � �� � �, and two values of the outage probability: 0.7
and 0.9. As expected, for higher values of the outage probability
and less number of antennas, more transmit power is necessary.
Besides, as the estimation SNR decreases, the difference between
the necessary transmit power for the robust and the non-robust ap-
proaches increases, as expected.
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[4] A. Pascual-Iserte, A. I. Pérez-Neira, and M. A. Lagunas, “On
Power Allocation Strategies for Maximum Signal to Noise
and Interference Ratio in an OFDM-MIMO System,” ac-
cepted at IEEE Trans. on Wireless Comm., April 2003.

[5] F. Rey, M. Lamarca, and G. Vázquez, “Optimal Power Al-
location with Partial Channel Knowledge for MIMO Multi-
carrier Systems,” in Proc. IEEE 56th Vehicular Technology
Conference, VTC’02, Sept. 2002, vol. 4, pp. 2121–2125.

[6] A. Pascual-Iserte, A. I. Pérez-Neira, and M. A. Lagunas,
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