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ABSTRACT

As a recursive algorithm, the particle filter requires initial samples
to track a state vector. These initial samples must be generated
from the received data and usually obey a complicated distribution.
The Metropolis-Hastings (M-H) algorithm is used for sampling
from intractable multivariate target distributions and is well suited
for the initialization problem. Asymptotically, the M-H scheme
creates samples drawn from the exact distribution. For the particle
filter to track the state, the initial samples need to cover only the
region around its current state. This region is marked by the pres-
ence of modes. Since the particle filter only needs samples around
the mode, we modify the M-H algorithm to generate samples dis-
tributed around the modes of the target posterior. By simulations,
we show that this ”mode hungry” algorithm converges an order of
magnitude faster than the original M-H scheme for both unimodal
and multi-modal distributions.

1. INTRODUCTION

Particle filters use Bayes’ rule to update an arbitrary posterior re-
cursively as the observations arrive. In the filter mechanics, poste-
riors are represented by particles that are discrete realizations dis-
tributed according to the underlying distribution (either directly or
by weighting). Hence, the particle filter can estimate any statistics
of the posterior, and the estimation accuracy can be improved up
to the theoretic bounds by increasing the number of particles. Par-
ticle filters are becoming widely popular in signal processing due
to (i) the advances in the current computer systems (ii) their easy
implementation [1,2].

As a recursive algorithm, the particle filter needs initialization
(or initial samples) to track a state vector as the observations arrive
in sequence. The algorithm’s estimation performance not only de-
pends on how it is constructed around the data models, but also on
its initial samples. Hence, it is necessary to generate good initial
samples from the data itself. If the initial samples do not suffi-
ciently cover the state space, important features of the distribution
(such as multi-modality) can be missed. This can significantly de-
grade the estimation performance of the filter.

Monté Carlo Markov chain (MCMC) simulation techniques
offer attractive solutions to this type of sampling problem. In
MCMC terms, the initialization problem becomes the estimation
of a posterior densityπ(x) by simulating a Markov chainx(1), x(2),

. . . , x(t) whose stationary distribution is the target posteriorπ as
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t → ∞. Among the MCMC sampling techniques, the Metropolis-
Hastings (M-H) algorithm is used in this paper to demonstrate the
concepts and the results.

The M-H scheme [3,4] provides a basis from which other well-
known sampling algorithms such as the Acceptance-Rejection (AR)
and Gibbs sampling can be derived as special cases [5,6]. The al-
gorithm assumes that it is possible to assign probabilities from the
distribution to a given realizationx. These probabilities need not
be exact; they can also be given up to a proportionality constant.
Note that calculating probabilities given the particles is different
(and much easier) than generating particles directly from the, pos-
sibly intractable and multivariate, distribution itself.

At each iteration of the algorithm, a candidate generating den-
sity q(x, y) : x → y is used to propose moves (orjumps) within
the state space. These moves are accepted or rejected with proba-
bility α(x, y) so that the following reversibility condition is satis-
fied:

π(x)q(x, y)α(x, y) = π(y)q(y, x) (1)

The reversibility condition is also known asdetailed balance, mi-
croscopic reversibility, or time reversibility and is a necessary con-
dition for the chain to satisfy ifπ is the stationary distribution [5].

The convergence analysis of the M-H algorithm is an open
problem. Many methods have been proposed to detect the con-
vergence of this scheme [7–9]. Although these convergence de-
tection methods are very useful, the M-H algorithm usually takes
a large number of iterations to converge, and hence it is usually
not considered for real-time applications in its original form. To
make the algorithm more attractive, there has been some effort on
making the algorithm more efficient. Two fundamentally different
approaches are used to speed up the M-H scheme: One approach
adaptively alters the jumping rules (i.e., the jump size) defined by
the candidate generating density. The other approach uses a mode-
search algorithm (usually a grid search) to locate the modes and
samples from a mixture of suitable distributions located at these
modes to generate a prior for the algorithm. The first method
slightly improves the convergence speed but not enough for a real-
time initialization. The latter method incurs a high computational
cost to begin and is therefore not suitable for our purposes.

In this paper, we propose a new approach called Mode-Hungry
M-H (MHMH) to speed up the original scheme for the initializa-
tion of the particle filters. The new method modifies the jump-
ing rules according to how the state of the Markov chain is dis-
tributed and concentrates the particles on the high probability re-
gions. The algorithm quickly converges on the multi-modal re-
gions of the posterior correctly. The estimated posterior is an ap-
proximation to the true posterior around the mode. However, it can
be shown that any discrepancies between the estimated and true



posteriors can be handled by the particle filter’s built-in weighting
structure [1, 2]. This property of the particle filters and the con-
vergence speed makes this algorithm very attractive for particle
filtering applications.

Organization of the paper is as follows. Section 2 provides
the background for the M-H algorithm. Section 3 describes the
modification of the basic algorithm and gives pseudo-code for the
MHMH algorithm. Computer simulations are given in section 4.

2. BACKGROUND

The Metropolis-Hastings scheme [5] is depicted in Figure 1. The
objective of the algorithm is to distribute the particles (discrete
state samples) according to the target distributionπ shown on top.
Hence, the algorithm recursively redistributes its states around so
that, asymptotically, the resulting Markov chain is distributed ac-
cording to the target distribution. In the figure, the Markov chain
at iterationt is represented byx(t). The new chain candidatesy
are generated by the proposal functionq(x, y), which is usually
the spherically symmetric random walk:

q(x, y) = q(|x − y|) ∝ exp

[

(x − y)2

2σ2

]

(2)

Once the new candidates are generated, the algorithm accepts the
moves or keeps the current state according to the acceptance ratio
α(x, y) derived from the reversibility condition:

α(x, y) = min

[

π(y)q(y, x)

π(x)q(x, y)
, 1

]

(3)

In Figure 1, the acceptance ratios are represented by the height
of the boxes for each candidate. To accept or reject the new can-
didate, a random number generator is used to generate uniform
random numbers in(0, 1), u ∼ U(0, 1), represented by the black
dots in the figure. Ifu is less than the acceptance ratio for the spe-
cific particle, the move is accepted, otherwise, it is rejected. Also,
the acceptance rate at iterationt is defined to be the number of
accepted moves divided by the chain size. Visually, it is the num-
ber of arrows in the last stage in Figure 1 divided by the number
of particles. Finally, the chain moves tox(t+1) and the scheme is
repeated.

Note that the candidate generating (or proposal) function has
a significant impact on the efficiency of the algorithm. It should
be constructed so that the generated candidates display most of the
structural dependence between the different dimensions.σ in (2)
is defined as the jump size and is the other important variable af-
fecting the algorithm speed. If it is too low, the algorithm takes a
longer time to converge since the chain moves very slowly along
the target distribution. On the other hand, if it is too high, the algo-
rithm mostly rejects the new candidates and stays frozen. The cur-
rent MCMC literature concentrates on these two important com-
ponents of the algorithm for its efficiency [9].

3. MODE-HUNGRY APPROACH

The M-H scheme is naturally very slow since it tries to explore the
whole parameter space. Hence, any relevant information should
be used to increase the convergence speed. The proposal functions
should incorporate any dimensional dependence, and the jump sizes

π(x)

x(t)

y

1

0

q(x, y)

α(x, y)

x(t+1)

Fig. 1. The Metropolis-Hastings scheme is demonstrated. Each
circle represents a sample from the chain in the respective state
space. The algorithm uses its current state to generate new candi-
dates for its next state using a candidate generating functionq. The
new candidates are accepted or rejected in a way that the Markov
chain asymptotically converges to the target posteriorπ.

should be modified by monitoring the acceptance rate of the al-
gorithm. In this section, we will modify the M-H algorithm to
concentrate around the modes of the target posterior. We call this
modification theMode-Hungry approach. Interestingly, note that
the adaptive modification of the simulation gives rise to a non-
Markov chain since the transition probabilities depends on the pre-
vious iteration results. However, the performance of the results
themselves provide a justification for their use.

In most cases, the target distribution is multi-modal with a sig-
nificant number of small modes and a few large modes. The small
modes can be due to (i) the nature of the problem, (ii) modelling er-
rors, and (iii) an approximation of the actual target densityπ used
in the simulation. In most particle tracking problems, the large
modes are of interest since the small modes get rejected by resam-
pling (or weighting) after a few iterations of the filter. Moreover,
the small modes tend to trap the chain and increase the conver-
gence time. It takes the M-H scheme a notoriously high number of
iterations to break the particles from these small modes and con-
centrate them on the higher ones [10]. Hence, when generating the
target densityπ, there is a trade-off between how closely it can be
represented versus how long the initialization takes to converge.

With this observation, it is suggested that if the objective of
the initialization is to cover only the high probability modes, the
particles around the small modes should be redistributed accord-
ingly during the M-H iterations. This, in turn, will result in a faster
coverage of the high modes and improve the convergence speed.
Hence, at timet, the chainx(t) consisting ofN particles is sep-
arated into two partitions after being sorted with respect to likeli-
hoods. DenoteP1 as the set corresponding to theN − Mt high
probability particles, andP2 as theMt low probability particles.
During the algorithm execution, a rule needs to be determined to
distribute the particles fromP2 aroundP1 so that the algorithm
does not get stuck at low probability modes. We propose to use
randomly chosen particles fromP1 as the candidatesy for the par-
ticles fromP2 and accept their moves with probability 1.

Figure 2 illustrates this Mode-Hungry approach. The target
particles fromP1 can be chosen in a variety of ways, two of which
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Fig. 2. Particles corresponding to the partitionP2 are shown in
black. In the figure, the particles inP2 are distributed over the
states defined byP1 uniformly.

are considered here: proportional to their probabilities and uni-
formly. If we impose that the cross-jumps fromP2 to P1 should
be such that particles around one mode should not be quickly con-
sumed by another similar size mode, then it is not prudent to pick
particles fromP1 proportional to their probabilities. In this case,
the highest mode quickly accumulates all the particles and the al-
gorithm results in a single mode distribution. Hence, this rule is
recommended if the target posterior is known to be unimodal.

If the particles fromP2 are uniformly distributed overP1, the
algorithm quickly finds the multiple modes; however, the distri-
butions around the modes can be skewed if they are far apart from
each other as illustrated in the next section. This is still acceptable,
since any imbalance of the particle distribution will be automati-
cally corrected by the particle filter’s weighting mechanism. Note
that a good local distribution around the mode is still required to
prevent sample degeneracy [1]. The particle filter attaches a weight
wi to each particlexi coming from the M-H scheme. Then, it es-
timates an expected valueE[.] of the posterior as

E[f(x)] =
∑

i

wif(xi) (4)

assuming that the weights are normalized. Hence, as long as the
region around the modes are covered correctly, the weights can
correct the imbalances introduced by the initialization since they
also depend on the target densityπ. It should be noted that the
original M-H scheme also has similar issues in multi-modal prob-
lems; however, the proposed cross-jumps enable the algorithm to
cover the high modes faster. The frequency of these jumps can
be determined by monitoring the acceptance rates or how tight the
particles distribute themselves around the modes; however, a fixed
period (Tjump) also seem to work. The pseudo-code gives the de-
tails of the proposed algorithm.

4. EXAMPLES

In this section, our objectives are (i) to demonstrate that the pro-
posed method results in faster convergence, and (ii) to show that
the algorithm can handle multi-modal distributions. In the simula-
tions, the initial chain values are generated from a uniform distri-
butionxi ∼ U(−50, 50) in each dimension.

4.1. Single Mode Gaussian Example

N = 1000 particles are simulated to obtain a three dimensional
Gaussian distribution:π(x) ∼ N (µ,Σ). The mean and covari-
ance of the distribution are the following:

µ =





20
−15

45



 Σ =





1 0 0.5
0 2 −.5

0.5 −.5 0.5



 (5)

Mode-Hungry Metropolis-Hastings

• At time t, decide if cross-jumping is needed for x(t), i.e., ev-
ery Tjump iterations

• If not, then for each particle xi, use the M-H scheme:

– generate a candidate yi using q(xi, yi)

– calculate the acceptance ratio

α(xi, yi) = min

[

π(yi)q(yi, xi)

π(xi)q(xi, yi)
, 1

]

– sample u ∼ U(0, 1)

– if u ≤ α(xi, yi), set x
(t+1)
i = yi, else, x

(t+1)
i = x

(t)
i .

• If yes, then use the Mode-Hungry scheme:

– determine a subpartition of size Mt < N

– order the current particles according to their probabil-
ities in descending order: xi → x∗

j where x∗ is the
ordered particle set

– generate candidates y∗(1) for x∗(1) = {x∗

j |j : j =

1, 2, . . . , N − Mt} using q(., .)

– calculate the acceptance ratio α(x∗(1), y∗(1)) and

set x
(t+1)
j to x∗

j (1) or y∗

j (1) accordingly for j =
1, 2, . . . , N − Mt

– distribute Mt candidates y∗(2) from x∗(1) uniformly

– set x
(t+1)
j to y∗(2) for j = N − Mt + 1, . . . , N

�

For the Mode-Hungry M-H (MHMH) algorithm,Mt is chosen to
be 333. As the proposal functionq, an independent random walk
is used:

q(x,y) ∝ exp

[

−
1

2

3
∑

i=1

(xi − yi)
2

σ2
i

]

(6)

with σ2
1 = σ2

2 = σ2
3 = 6. The particles belonging toP2 are dis-

tributed overP1 at every other iteration of MHMH (Tjump = 2)
till the variances of the distribution come close to the search vari-
ances of the proposal function. Fig. 3 displays the estimation
results of both algorithms. In the figure, it should be noted that
MHMH achieves convergence around the modes much faster than
the original M-H scheme. Moreover, both algorithms take approx-
imately 30 − 50 iterations to achieve the correlation structure in
(5) after convergence around the modes.

4.2. Multi-Modal Example

In order to demonstrate efficacy of the proposed modifications on
the multi-modal distributions, the following target density is used:

π(x) ∝
(

e
−(x1−20)2/2 +

1

2
e
−(x+20)2/2

)

×
(1

2
e
−(x1−30)2/10 + e

−(x+45)2/10
)

(7)

The same set of cross-jumping rules are used as in the previous
example (N = 1000, Mt = 333, andTjump = 2). In this exam-
ple, the random walk proposal is used withσ2

1 = 5 andσ2
2 = 5

as the respective variances inx1 andx2 directions. The resulting
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Fig. 3. MHMH (solid) and M-H (dashed) algorithms are run 100
times and the averaged estimates are displayed. MHMH is about
an order of magnitude faster in this case. The jumps in the MHMH
curves are attributed to the redistribution of the low probability
particles over the high ones.

distribution after 30 iterations of MHMH is shown in Fig. 4.
It should be noted in Fig. 4 that the local distributions of the

particles around the modes are correct. However, the number of
particles attracted to each mode does not obey the global distri-
bution (two of the modes are higher than the others hence should
attract more particles.) This is an issue also common to the M-
H scheme where it takes a high number of iterations for the M-H
algorithm to break particles from different modes to correctly con-
centrate them on different modes. This output is still suitable for a
particle filter because of the correct local distributions. The inher-
ent weighting of the particles would take care of any discrepancies
in the global distribution.

5. CONCLUSIONS

In this paper, the M-H algorithm is modified to achieve faster con-
vergence for the initialization of particle filters. The modification
depends on the important fact that the particle filter needs only
the distribution around the current state estimates. The MHMH
algorithm is shown to converge faster than the M-H scheme and
is well suited for particle filtering initializations. The effect of the
state dimension on the convergence speed of the proposed MHMH
algorithm is being studied. In the simulation examples, stopping
conditions for the cross jumps depends on monitoring the distribu-
tion and seeing if the particles have converged around the modes.
The stopping condition is extremely important for MHMH when
the target distribution is multi-modal. If the algorithm is allowed
to run further, the highest mode naturally consumes the particles
around the other modes. This issue can be handled by adaptively
changingMt andTjump and several strategies are being devel-
oped.
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