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ABSTRACT

The techniques of using wireless cellular networks to lo-
cate mobile stations have recently received considerable in-
terest. This paper addresses the problem of maximum-
likelihood (ML) location estimation using (uplink) time-of-
arrival (TOA) measurements. Under the standard assump-
tion of Gaussian TOA measurement errors, ML location
estimation is a nonconvex optimization problem in which
the presence of local minima makes the search of the glob-
ally optimal solution hard. To circumvent this difficulty, we
propose to approximate the ML problem by relaxing it to
a convex optimization problem, namely semidefinite pro-
gramming. Simulation results indicate that this semidef-
inite relaxation location estimator provides mean square
position error performance close to the Cramér-Rao lower
bound for a wide range of TOA measurement error levels.

1. INTRODUCTION

The capability of accurately positioning a mobile station
will be one of the essential features in the existing and fu-
ture wireless cellular communication systems. Mobile po-
sitioning enables many applications such as location of an
emergency call [1], intelligent transport systems, and inter-
active map consultation [2]-[4], and for this reason it has
recently received much attention.

Mobile positioning can be achieved by using the existing
global positioning system (GPS). However, employing the
GPS for mobile positioning would mean addition of hard-
ware in the mobile station (MS), which is not a cost effective
approach. Presently, much emphasis has been placed on uti-
lizing the base stations (BSs) to locate the MS. The basic
principle of the BS approach [4]-[6] is to use multiple BSs to
intercept the MS signal for extracting location-bearing pa-
rameters. One commonly used location-bearing parameter
is the time-of-arrival (TOA); i.e., the one-way signal prop-
agation time from the MS to a BS. Assuming line-of-sight
propagation and zero TOA measurement error, the TOA of
each BS provides a circle centered at the BS on which the
MS must lie. With three or more BSs, the MS location can
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be uniquely determined by finding the intersecting point of
the TOA-derived circles.

In practice, the TOA measurements may contain er-
ror due to various factors such as noise disturbance in
the received signal. Under such circumstances maximum-
likelihood (ML) estimation is a powerful method of esti-
mating the MS location. Based on the standard assump-
tion of Gaussian distributed TOA measurement error, the
ML location estimate is the globally optimal solution of a
nonconvex optimization problem [7]. Traditionally, Taylor
series approximation is applied to the ML problem to at-
tempt to find the solution of the ML optimization problem
in an iterative manner. This idea results in the so-called lin-
earized least squares (LLS) location estimator [6]-[7]. Like
many iterative minimization techniques, the location accu-
racy of the LLS estimator depends much on the initial guess
of the MS location. In particular, poor initialization is likely
to result in convergence to local minima. In this paper, we
propose a different approach of approximating the ML prob-
lem, namely semidefinite relaxation [10]-[12]. We consider
relaxing the ML problem to construct a suboptimal ML but
simpler optimization problem. The resultant relaxed ML
problem is a semidefinite program (SDP) [10], which is not
only convex but has its optimization algorithms well devel-
oped in the optimization context. Hence, the SDR approxi-
mate ML location estimator can be effectively implemented
by employing certain readily available SDP solvers.

The organization of this paper is as follows. In Sec-
tion 2, the TOA-based location estimation problem is for-
mulated and the ML method is introduced. In Section 3,
the semidefinite relaxation (SDR) method for approximate
ML location estimation is developed. Simulation results
are presented in Section 4 where we evaluate the location
estimation performance of the proposed SDR location esti-
mator. Finally, conclusions are drawn in Section 5.

2. PROBLEM STATEMENT

In this section we describe the TOA-based mobile location
problem and the associated ML location estimation prob-
lem. Consider that there are a number of m BSs available
for locating the MS. Let c = [x, y]T be a vector contain-
ing the Cartesian coordinate of the MS. Likewise define
ui = [xi, yi]

T to be the coordinate vector of the ith BS.
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The distance between the MS and the ith BS is given by

di = ‖c − ui‖ (1)

where ‖.‖ stands for the 2-norm. If we assume line-of-sight
(LOS) propagation between every BS and the MS, then
we can measure the di’s by estimating the one-way signal
propagation time between the BSs and MS; i.e., time-of-
arrvial (TOA) estimation [4] (BSs that exhibit non-LOS
with respect to the MS may be identified and then discarded
by certain algorithms [8]). Let d = [d1, . . . , dm]T . The

measured distance vector, denoted by d̂, can be modeled as

d̂ = d + ε (2)

where ε represents the distance measurement error.
The mobile location problem consists in estimating c

from the measured distance vector d̂, given knowledge of
the BS locations ui. Maximum-likelihood (ML) location
estimation is a probabilistic method that determines c by
considering the probabilistic model of the error vector ε. In
general, the exact form of the probability density function
of ε is difficult to determine because it depends on several
complicated factors such as the nonlinear structure of the
TOA estimator [4]. Hence, it is common to assume [6] that ε
follows a Gaussian distribution with zero mean. In addition,
it is reasonable to assume that each εi is independent of one
other. Define Σ = diag(σ2

1 , . . . , σ2
m) to be the covariance of

ε. The ML location estimator is shown to be [7]

ĉ = arg min
c∈R2

(d̂ − g(c))T Σ−1(d̂ − g(c)) (3)

where g : R
2 → R

m has its ith element given by

gi(c) = ‖c − ui‖. (4)

It is worth pointing out that (3) can be alternatively re-
garded as a least squares fitting problem, which serves as
a reasonable source location criterion when the probability
distribution of ε is not known.

To obtain the ML location estimate we need to solve
the optimization problem in (3). Unfortunately, (3) can be
shown to be a nonconvex optimization problem for which
finding the globally optimal solution may not be easy. In
the subsequent section, we will propose an approximation
method for (3) using semidefinite relaxation.

3. MOBILE LOCATION ESTIMATION USING
SEMIDEFINITE RELAXATION

Semidefinite relaxation (SDR) is an accurate approxima-
tion technique for a number of difficult optimization prob-
lems [10]-[14]. To facilitate the development of the SDR
approximation for ML location estimation, we first focus
on reformulating the (nonconvex) ML optimization prob-
lem. Then, we show how the reformulated ML problem
can be approximated in a convex manner using semidefi-
nite programming.

We should point out that the ideas behind the proposed
SDR method are based on the concepts of convexity and
semidefinite programming. Full details for these two top-
ics can be found in the literature such as the introductory
materials in [15, 10].

3.1. Reformulation of the ML Problem

The ML location estimation problem in (3) can be rewritten
as a constrained quadratic program as follows:

min
c,g

(d̂ − g)T Σ−1(d̂ − g) (5a)

s.t. g2
i = ‖c − ui‖2, i = 1, . . . , m (5b)

gi ≥ 0, i = 1, . . . , m (5c)

Since the distance vector d̂ contains only non-negative ele-
ments, it is shown in the Appendix that (5) can be simplified
as

min
c,g

(d̂ − g)T Σ−1(d̂ − g) (6a)

s.t. g2
i = ‖c − ui‖2, i = 1, . . . , m (6b)

in which the inequality constraint in (5c) is discarded. In
the Appendix, we prove that a globally optimal solution of
(6) must have gi ≥ 0 for all i, thus the optimal solution of
(6) is that of (5). By decomposing the 2-norms in (6), the
equivalent ML problem in (6) can be re-expressed as:

min
c,g

[
gT 1

] [
Σ−1 −Σ−1d̂

−d̂T Σ−1 d̂T Σ−1d̂

] [
g
1

]
(7a)

s.t. g2
i =

[
cT 1

] [
I −ui

−uT
i ‖ui‖2

] [
c
1

]
, i = 1, . . . , m (7b)

Eq. (7) is a homogeneous quadratic program with homoge-
neous quadratic equality constraints. While the objective
function in (7a) is convex, and the quadratic equality con-
straints in (7b) are nonconvex. The next subsection will
show how the nonconvex problem in (7) can be approxi-
mated by a semidefinite programming based convex opti-
mization problem.

3.2. Semidefinite Relaxation

To illustrate the idea of semidefinite relaxation (SDR), de-
fine two matrices G = ggT and C = ccT . By noting that[

g
1

] [
gT 1

]
=

[
G g
gT 1

]
,

[
c
1

] [
cT 1

]
=

[
C c
cT 1

]
(8)

and using the basic property that xT Ax = tr{xxT A}, the
ML problem in (7) can be reformulated as

min
c,g,C,G

tr

{[
G g
gT 1

] [
Σ−1 −Σ−1d̂

−d̂T Σ−1 d̂T Σ−1d̂

]}
(9a)

s.t. Gii = tr

{[
C c
cT 1

] [
I −ui

−uT
i ‖ui‖2

]}
, i = 1, . . . , m

(9b)

G = ggT , C = ccT (9c)

In the reformulated ML problem in (9), the constraints in
(9b) are linear (and convex) in (c,C,G) but the constraints
in (9c) are nonconvex. The principle of SDR is to modify
(9c) such that an approximate but convex version of (9) is
obtained. From (8), the constraints in (9c) imply that the
matrices [

G g
gT 1

]
and

[
C c
cT 1

]
(10)
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are of rank 1 and symmetric positive semidefinite (PSD). If
the constraints in (9c) are relaxed such that we only require
the matrices in (10) to be symmetric PSD, then we obtain
the following semidefinite relaxed ML problem:

min
c,g,C,G

tr

{[
G g
gT 1

] [
Σ−1 −Σ−1d̂

−d̂T Σ−1 d̂T Σ−1d̂

]}
(11a)

s.t. Gii = tr

{[
C c
cT 1

] [
I −ui

−uT
i ‖ui‖2

]}
, i = 1, . . . , m

(11b)[
G g
gT 1

]
� 0,

[
C c
cT 1

]
� 0 (11c)

where the notation X � 0 means that X is symmetric PSD.
The PSD constraints in (11c) are convex [10]. As (11a)
and (11b) are also convex, (11) is a convex optimization
problem. In the optimization literature, (11) is called a
semidefinite program (SDP) [10] for which there are readily
available algorithms for finding the globally optimal SDP
solution; e.g., the SeDuMi package [16].

Once the optimal solution of (11), denoted by

(ĉ, ĝ, Ĉ, Ĝ), is found, the solution ĉ is taken as the SDR
approximate ML location estimate.

4. SIMULATION RESULTS

We conduct several computer simulations to evaluate the
location accuracy of the proposed SDR location estima-
tor. Two commonly used location estimator, namely the
sphere interpolation (SI) estimator [9] and the linearized
least squares (LLS) estimator [7] are also tested for ref-
erence. It should be mentioned that SI is a closed-form
method, and that LLS is an iterative method requiring ini-
tialization. In the following simulations, the LLS estimator
is initialized by the SI location estimate.

In the first simulation example, 5 BSs are used to lo-
cate the MS. The BS locations are [0, 0]m, [3000

√
3, 3000]m,

[0, 6000]m, [−3000
√

3, 3000]m and [−3000
√

3,−3000]m.
The MS location is [1000,2000]m. The TOA measurement
error variances are assumed uniform; i.e., σ2

1 = σ2
2 = . . . =

σ2
m. Fig. 1 plots the mean square position errors (MSPEs) of

the three location estimators against σ2
i . The figure shows

that the MSPE of the proposed SDR estimator is close to
the Cramér-Rao lower bound (CRLB) for a wide range of
measurement error levels. Moreover, the SI and LLS esti-
mators exhibit the threshold effect under high measurement
error levels. Such an undesirable effect does not happen in
SDR location estimation.

In the second simulation example, we randomize the
MS location to evaluate MSPE performance averaged over
various MS locations. At each simulation trial, the MS
location is randomly selected on a circle centered at the
origin with radius 1000

√
5m. The other simulation settings

are the same as those for the previous example. The results,
shown in Fig. 2, are similar to those of the previous example.

In the last simulation example, the number of BSs for
mobile positioning is reduced to 3. The BS locations are
[0, 0]m, [3000

√
3, 3000]m and [−3000

√
3, 3000]m. The MS

location is [100,−500]m. TOA measurement error variances
are again uniform. The simulation results are shown in

Fig. 3. Comparing Fig. 3 with the 5-BS performance re-
sults in Fig. 1, we notice that the location performance of
the SI and LLS estimators deteriorates with less BSs. In
particular, the threshold effects of the two estimators hap-
pen with smaller measurement error level when less BSs are
available. Like the previous results, the MSPE performance
of the SDR estimator remains close to the CRLB.
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Figure 1: Location accuracy in a 5-BS system.
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Figure 2: Location accuracy in a 5-BS system with
random MS location.

5. CONCLUSION

The obstacle of using TOA-based ML location estimation
lies in the nonconvex nature of the ML problem. We
have shown in this paper how the ML problem can be ap-
proximated by a convex optimization based method called
semidefinite relaxation. Simulation results have illustrated
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Figure 3: Location accuracy in a 3-BS system.

that the semidefinite relaxation location estimator provides
an accurate approximation to the true ML.

6. APPENDIX

To prove the equivalence of (5) and (6), it suffices to show a
globally optimal solution of (6), denoted by (c�,g�), always
has g�

i ≥ 0 for all i. The minimal objective function value
in (6) can be expressed as

(d̂ − g�)T Σ−1(d̂ − g�) =
m∑

i=1

1

σ2
i

(d̂i − g�
i )2

≥
m∑

i=1

1

σ2
i

(|d̂i| − |g�
i |)2 (12a)

≡ (d̂ − abs(g�))T Σ−1(d̂ − abs(g�))
(12b)

where abs : R
m → R

m is the elementwise absolute func-
tion, and (12b) is due to the fact that d̂i ≥ 0 for all i.
Eq. (12) implies that the minimal objective function value
is less than or equal to that achieved by the feasible point
(c�, abs(g�)). This further implies that if strict inequality
in (12a) holds, then (c�,g�) is not globally optimal. Since
equality in (12a) holds if and only if g� = abs(g�), the
global optimal solution must satisfy g�

i ≥ 0 for all i.
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