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ABSTRACT

Many phenomena exhibit cyclical patterns without being
periodic. This can be modeled using “pseudo-periodic” func-
tions which enable cyclical patterns to be decomposed into a
periodic signal along with a set of parameters that define the
deviations of the pattern from true periodicity. This paper
describes algorithms that estimate the parameters and the
template function using the � -norm cost function. Imple-
mentation issues such as varying amplitude between pseudo-
periods and problems using finite data records are also dis-
cussed. Applications to sunspot data explore practical uses
and limitations of the method.

1. INTRODUCTION

A pseudo-periodic function � � � � may be defined by

� � � � � � � � � 	 � 
 � � � � � � (1)

where 	 � � � is a template function with compact support on � � � � � , 
 � scales frequency, � � translates in time, and � �
adjusts the amplitude. Earlier work [6] shows that if � � ��

and if � � � � is the periodic extension of 	 � � � , then it is
possible to achieve unbiased estimation of the 
 � and � �
using the � -norm � � � � � � . This is defined to be the norm
induced by the inner product [7]
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where 	 � � � and
� � � � are periodic functions of periods % &

and % ' (which need not be the same). This paper tackles
four issues that arise in the estimation of pseudo-periodic
functions: (1) incorporation of nonunity amplitude weight-
ings, (2) algorithms (L � NE and INRT) for estimating the
unknown parameters, (3) a method to find a good template
function 	 � � � if it is unknown. Finally, (4) since any use of
the method is necessarily in discrete time and data driven,
some practical implementation issues are considered.
The mathematical setup is reminiscent of wavelet transforms:
the template function plays a role analogous to that of the
mother wavelet, while the frequency scaling parameter is

analogous to the scale factor. However, wavelet scale fac-
tors are often constrained to specific values which insure
that the wavelet basis functions are orthogonal, while the
frequency scaling parameters assume arbitrary values and
so the template functions need not be orthogonal. Hence,
template functions do not form a basis, rather, they form a
frame [1], a more-than-complete spanning set. A more fun-
damental difference is that the goal of the pseudo-periodic
analysis is to directly provide information such as the time
and frequency of repetitions of the template within a wave-
form.

2. SIGNAL VS. FUNCTION

The definitions (1) and (2) apply to functions that are de-
fined on the whole real line. To apply these ideas to (finite)
data records, suppose that the template function 	 � � � is de-
fined by ( & points in

 � � � � � . Then the � -inner product can
be calculated as the ) * -inner product normalized by the size
of the support of the template. Thus
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where
. , � 4 & 5 
 denotes the number of samples in the

support. The goal of the estimation is to find the parame-
ters � � , 
 � , and � � so that the template best matches the 6 th
pseudo-period of the data � � � � . It is possible to either hold� � � � unchanged and compare it with 	 � 
 � � � � , or to hold	 � � � unchanged and compare it with � � 
 7 � � � 7 � . Theorem
3.2 of [6] shows that these two operations are identical over8

, so it is a matter of computational convenience which ap-
proach to use. In practice it is generally easier to stretch and
compress the template.
Since both the template 	 � � � and the data � � � � are repre-
sented by a finite collection of points, the domain over which
the sum (3) is carried out may be too short (when 
 9 �

) or
too long (when 
 : �

). This can be handled in two ways:
(a) wrap the data in the template when it is too short, or
(b) zero pad when it is too short. Both are roughly equiv-
alent, though there will be slight discrepancies in the be-
havior of the resulting algorithms, especially in terms of



stopping conditions. For the wrap-shift method, � � � � is the� �
-periodic extension of � � � � , and � � � � is compared with� � � � 	 
 � . This may be most useful for signals (such as

those from musical analyses [8]) where the phase of the lo-
cal period varies. The weakness of this setting is that dis-
continuity at junctions between local pseudo-periods may
complicate the interpolation. The pad zero method1 as-
sumes the deadband is filled with zeros, that is � � � � � �� �  � � � � � � � � � � � 	 � � � , � � � � � � � � � � �  � � � � � � 	 � . This may be
more useful for signals (such as heartbeat or sunspot data)
where there are silences (deadband) between pseudo-periods,
that is, where the template may be assumed to be approxi-
mately zero at either end of its domain.

3. STEEPEST DESCENT - LEAST � -NORM ERROR

One way to estimate the unknown parameters is with a gra-
dient method. Two different cost functions were suggested
in [6]: minimize the � -norm of error (L � NE), or maximize
the inner product (MaxCorr). L � NE is implemented with
the gradient method in this section. MaxCorr is discussed
in section 5. If the template contains inadequate information
(for example, is too short), the estimation is not meaningful
(A degenerate case would be a template with only a single
point.) It is the user’s responsibility to choose a good tem-
plate, and this choice is discussed in section 6.

3.1. Estimation Procedure (Approximate Gradient)

At each local period, � � � � � is known. The algorithm ex-
tracts

� � � � from � � � � (with an appropriate translation) and
then estimates the three parameters � � , � � and 
 � . In im-
plementation, it is easier to use the parameter 
 � in place of


 � where the two are related by


 � � �� � �
� �

� � 	 
 �  (4)

With appropriate � � � � � and
� � � � , the cost function at the � th

pseudo-period can be computed:
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The parameters are updated by:
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1The estimation procedure need not, in reality, fill a vector with zero
values. Instead, shifting can be performed by sliding the window that ex-
tracts � � � � from � � � � according to � .

The algorithm will stop (and consider the current parame-
ters satisfactory) when all three derivatives change sign and:
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where � � , � �
and � � are user specified values. Because the

cost function is nonlinear, it should be expected that the cost
surface might have various local minima. Since multiple
parameters are adapting simultaneously, their rate of con-
vergence (related to step-sizes) must be carefully set. Good
sets of � �

, � � and � � were found by trial and error.

4. AMPLITUDE MISMATCH

In addition to translation and frequency scaling, real-life
pseudo-periodic signals usually have amplitude mismatch.
In contrast, the theoretical development in [6] assumed � � �" �  � . This section shows that, depending on the cost func-
tion chosen, the amplitude mismatch might or might not
bias the estimation. As intuition suggests, MaxCorr is im-
mune to amplitudemismatch, while ignoring amplitudemis-
match when using L � NE may result in biased estimates.
The cost function of MaxCorr is:

!� � # � � � � �
�

� � � � � $ "  (6)

Theorem 1 With MaxCorr (6) as the cost function, the am-
plitudemismatch factor � need not be taken into account in
order to estimate � and 
 . Moreover, � cannot be estimated
using the MaxCorr cost.

Proof: Let
!�
be the cost function with amplitude mismatch:

!� � # � � � � �
�

� � � � � $ � � �
# � � � � � � � � � � $ � � � % �

When the match is perfect

# !�
# � � �

# !�
# � � � % � � �

The above proof also shows that it is impossible to esti-
mate the amplitude mismatch factor � using MaxCorr as
cost function because the derivative at the correct coordi-
nate ( � $ , 
 $ ) will be zero, regardless of � .

Theorem 2 With L � NE as the cost function, the amplitude
mismatch factor � must be taken into account in order to
estimate � and 
 . Ignoring � may lead to biased estima-
tion.

Proof: Let � be the amplitude factor, and

� � � � � � � � �
� � � � � � ��  (7)

The objective is to show that if �
%� "

, then
�

does not
achieve its minimum at � � � $ . Suppose the template



� � � � � matches the data
� � � � at � � � � , i.e.

� � � � � � � � � � � .
Expressing the � -norm in terms of the � � -norm yields

� � � � � � � � � � 	
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 � � � �

For the estimation to be unbiased,
� �
� �
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In general � � � � � �� �
����  �  � �� � �

Hence� �� � � �� � � 	 
 � � �  � � � 
 � �  � 	 �� � � 	 
 � � �  � � � 
 � �  � 	 �� �� �� � =
	 
 � � �  � � � 
 � �  � 	 �� � � � � � 	 
 � � �  � � � 
 � �  � 	 � 
 � �  �� �� �� � ���� � � =

� � � � � � 	 
 � � �  � 	 �� � � � � � � � � � � � 	 
 � � �  � 	 � 
 � �  �� � ���� � �
� �
� �

����  �  � �� � �
	

�� �
By violating (8), the estimation is, in general, biased when

	
�� �

.

5. THE MAXCORR ALTERNATIVE

As a result of using MaxCorr (6) as the cost function for
gradient estimation, a relationship between � and the tem-
plate is found. This relationship can be exploited to create a
faster method of estimating � � .
Theorem 3 The frequency scaling factor � is determined
by the ratio between the energy of the template and energy
of frequency scaled (by � � ) version of itself:

� � � � � � � � � �
� � � � � � � � � � (9)

Proof: Writing (6) in terms of the � � norm yields

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
� 

where � � � � � � � � � � � � � � �� � � �
� � � � � � � � � � � � (10)

At match, � � � � and
� � � � � � � � � � � . Thus
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which implies that
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+ �
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The right hand side is complicated since � appears in the
template � � � � � and in the upper limit of the sum.
This is in the form of an ODE� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� �

� �  �  �
which can be solved� � � � � � � � � � � �

= � � � � � � � � � �

The matching condition � � � � implies
� � � � � � � � � � � , and� � � � � � � � � � � � � � � � � � � � � �

Realizing that the template has � � = 1 shows that
� � � � � � � � � �� . Hence � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

which can be rearranged to show (9).

5.1. Application: Independent Norm Ratio Test (INRT)

If
� � � � � on the right hand side of (9) is replaced by r( � ), the

following equation is obtained

� � � � � � � � � �
� � � � � � � � (11)

The expression on the right hand side will be evaluated and
compared with the current value of � to be tested. If they
are equal, then � � � � � � � � � � � � � � � � � � . If the template func-
tion correctly describes the data, then

� � � � � � � � � � . From
the equation above, INRT does not give information about
translation parameters. This is obvious for the ‘wrap-shift’
method discussed earlier where the norm of

� � � � is inde-
pendent of any shifts.2 In the ‘pad zeros’ method, incorrect
translation introduces undesired signals into � � � � � � , caus-

ing  ! 	 � 
  " # 	 � 
  " to deviate from � . With other parameters fixed,
� � can be estimated using a simple one-dimensional search.
INRT is based on the error surface � � � � � � � � � � � � � � � � � � � � .
Since this is not very smooth, it may have many local min-
ima. On the other hand, since INRT is numerically very
fast, it may be useful when computation is at a premium.
Even small errors in the norm, however, may lead to large
changes in � , thus making INRT sensitive to noise and to
template mismatch.

2This occurs because, for finite series, numbers can be added in differ-
ent order without affecting the sum. [2]



6. APPLICATION TO SUNSPOT DATA

The raw sunspot data from [3] is smoothed and called the
‘original data’ � � � � in Fig. 1. An initial template was cho-
sen (shown in Fig 2) to be equal to the data in the first
pseudo-period, and all values were normalized so that the
initial template has height � � �

and width � � �
. The

parameters � � , 	 � , and � � were then estimated using the
L 
 NE gradient method of (5).
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Fig. 1. The sunspot data in the top plot is superimposed over
the estimates which use the final template and the parameter
values given in the Table.

initial

template

templates 2-5 s(t)

Fig. 2. The initial template is chosen to be equal to the data
in the first pseudo-period of Fig 1. Successive templates are
then chosen according to the bootstrap method 1-5.

Because the choice of template is important, we propose
the following “bootstrap method” of finding and improving
templates:

1. Begin with a nominal template. This must be made
sensibly, though it need not be exact. In the above ex-
ample we suggest that a reasonable (though not infal-
lible) method is to choose the data in the first pseudo-
period as an initial guess at the template.

2. Run the parameter estimation algorithm to find appro-
priate amplitude, scale, and translation parameters for
the complete data record.

3. Parse the data record into its normalized pseudo-periods� � � � � .

4. Create a new template � � � � by averaging over all the� � � � � , i.e., � � � � � �
� � � � � � � � � � .

5. Iterate (return to step 2) until the template ceases to
change significantly.

Following this procedure with the sunspot data, the template
changed from its initial version (the first pseudo-period) to
the successive templates shown in Fig 2. Evidently, the
template ‘converged’ after one iteration, and continues to
wiggle around the cluster of curves. After five iterations,
the resulting template � � � � was used, along with the cor-
responding parameters �

�  � � 
� � to reconstruct the origi-

nal data. The reconstruction is shown in Fig 1. The final
converged values of the parameters are estimated for eight
pseudo-periods using the fifth template.

� 2 3 4 5 6 7 8 9

� � 1.19 1.42 1.07 1.31 1.48 2.03 2.53 4.18
� � 1.10 1.08 0.99 1.03 1.16 1.10 1.13 1.22

� � 0.48 -0.01 0.70 -0.01 -0.51 0.07 -0.24 -0.42
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