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ABSTRACT 
 

Processing marine-mammal signals for passive 
oceanic acoustic tomography or species classification are 
problems that have recently attracted attention in scientific 
literature. Practically, it has been observed that the time-
frequency structures of the marine-mammal signals are 
generally non-linear. This fact dramatically affects the 
performances achieved by the Cohen's class methods, 
knowing that these methods correctly perform only for 
linear time-frequency structures.  

Fortunately, it is possible to generate other class of 
time-frequency representations (TFRs) using the warping 
operator principle. Based on this principle, we propose a 
new method for marine-mammal signal characterization. 
More precisely, many warping operators will be used to 
“linearize” the time-frequency content of the signal. 
Furthermore, the chirp-like structures will be estimated. 
The results obtained for real data illustrate the attractive 
outlines of the proposed method. 

 
1. INTRODUCTION 

 
Motivation for processing marine-mammal signals 

stems from increasing interest in the behavior of 
endangered marine mammals [1]. The ultimate goal of the 
current research in this field is to develop tools for 
analysis of the emitted signal for species identification and 
monitoring. On the other hand, the characterization of 
underwater environment is a current topic very 
challenging. A potential application is the oceanic active 
tomography [2], which provides an environmental 
characterization using a man-made emitted signal. 
Nevertheless, it is possible to imagine the passive 
tomography concept which will benefit by the generated 
signals by the natural sources (opportunity sources).  

These two applications constitute arguments for the 
development of some adequate characterization tools of 
signals emitted by marine-mammals. 
 In numerous studies [3], and for well-known reasons, 
the spectrogram [4] has been used as the interface 
between sound and feature extraction. Nevertheless, in 
many applications, such as passive sonar signal 
processing, the spectrogram does not provide enough 
freedom to the user. On the other hand, as all the Cohen’s 

class members [4], the spectrogram analysis is limited in 
the case of non-linear time-frequency analysis.  

The current technique for analysis of non-linear T-F 
structures is based on the use of warping operators [5]. In 
time-frequency analysis context, its application produces 
the “linearization” of the time-frequency behavior of the 
signal. The design of warping operators imposes the 
knowledge of the time-frequency behavior of the signal. 
Moreover, if the T-F components of the signal have 
different T-F behavior (example: Hyperbolic Chirps or 
Linear Chirps), it is necessary to efficiently combine many 
warping operator types. For these reasons, in order to deal 
with the passive underwater context, the classical warping 
operator principle needs to be adapted.  

In this work, we propose a new method for time-
frequency analysis which is based on signal-dependent 
selection of some warping operators. The aim is to obtain 
an efficient time-frequency description of marine-
mammals emissions. Therefore, the examples will 
illustrate the performances of this method in a real-data 
context. 

The organization of this paper is as follows. In section 
2 we briefly present the warping operator (WO) concept. 
In section 3 we propose a new method for underwater 
signal analysis, based on the efficient combination of 
some time-frequency warping operators. In section 4 we 
will study the performances of the proposed approach 
using some real underwater mammals signals. Section 5 - 
"Conclusion" - highlights the significance of the results. 
 

2. WARPING OPERATOR PRINCIPLE 
 

Typical time-frequency analysis of signals emitted by 
marine-mammals involves the use of Cohen’s class 
members such as spectrogram or Wigner-Ville 
distribution (WVD) [3,4] or wavelet-based methods. 
While these methods are natural for signals containing 
pulses, sinusoidals, linear chirping, many other signal 
classes exist that are not well described in the terms of 
time, frequency or scale. Matching these types of signals 
requires a new joint distribution with different 
instantaneous frequency and group delay localization 
properties. One of the most known techniques [5] is the 
unitary similarity transformation. Using this concept, it is 
possible to construct distributions to match almost any 



one-to-one group delay or instantaneous frequency 
characteristics. One of the most used unitary transforms is 
the axis transformation [5], defined for a signal s(t) as an 
operator U on l2(ℜ), whose effect is given by  
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where w is a smooth, one-to-one function ([5]). Generally, 
these functions are chosen to ensure the “linearization” of 
the signal time-frequency behavior. Therefore, for a signal 
expressed as : 

( ) ( )02 ( )j f t m ts t e π β−=   (2) 
 

(where m(t) is the frequency modulation law, f0 the central 
frequency and β - the modulation rate), the associated 
time-warping function is defined as the inverse of 
modulation function m(t) [6]. For example, for a signal 
defined as 
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the associated warping function can be defined as [6] 
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 In the next figure, the effect of this warping operator, 
applied on signal s, in the time-frequency plane is plotted. 

 

 
Figure 1. The time-frequency effect of the signal warping 

 
 The new time-frequency coordinates are related to the 
standard ones via [5]  
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where w& denotes the derivate of w. As is exemplified in 
figure 1, the effect of warping operator application is the 
linearization of time-frequency structure of the analyzed 
signal. This linearization is materialized in the time-
frequency plane by the processing of the TFR of the 
warped signal. Usually, the TFRs of the Cohen’s class 
(CTFR) are used.    
 Finally, the warped based TFR (WTFR) is obtained by 
unwarping the coordinates of the CTFR using the 
following formula [5] :  
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 The result is a cross-terms free time-frequency 
distribution, providing a correct concentration of the 
energy across the theoretical instantaneous frequency law. 

This main property of the warping-based TFR is 
illustrated in the figure 1 for the signal given in (3).      
 In the case of marine-mammal sounds, many non-
linear time-frequency structures generally occur. The 
warping-based time-frequency analysis of these types of 
structures imposes the separation and behavior estimation 
of each time-frequency component. 
 One possible method is based on the signal 
decomposition on an extended basis function dictionary 
that can accurately represent a multiple T-F structure 
signal, even for the non-linear case [7]. Nevertheless, in 
order to achieve good analysis performances, the 
dictionary size must be large. Consequently, some 
computational difficulties appear when large number of 
elementary functions must be processed.  
 In the next section we propose an alternative method 
which is based on signal component separation using 
different warping operators.  

 
3. WARPING BASED CHARACTERIZATION OF 

UNDERWATER SIGNALS 
 
 Using the principle previously presented, we propose 
in this section a warping based method for efficiently 
characterize the underwater signals. This method is based 
on the parallel application of many warping operators and, 
for each issued signal representation, we look for linear 
time-frequency structures existing in a given time-
frequency region of interest. In the most general case, this 
signal can be expressed as 
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where {Ci} is the set of the time-frequency structure types 

(classes) and ( ){ }iC
js  is the set of signal components 

having a Ci-type time-frequency behaviour. Ci could 
denote the hyperbolic frequency modulation (HFM) class, 
kth order Power Frequency Modulation (K-PFM) [5,6] 
linear chirp class, etc.

iCN  is the number of Ci-type time-
frequency structures which composes s(t).  

We consider {Wi} – the family of warping operators 
associated to the classes {Ci}. The effect of the 
application of an element of this family, Wi, on s(t) is the 
linearization of time-frequency structures corresponding 
to ( ){ }iC

js . 
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Organizing the {Wi} operators in parallel manner and 
using the Matching Pursuit-based Chirplet Estimation 
(MPCE) procedure proposed in [8], we can estimate all 
the parameters of signal components. This method, called 



Warped-based Signal Decomposition (WSD), is 
illustrated in the next figure. 

 

 
Figure 2. Warping based Signal Decomposition algorithm 
 
After the application of Wi, all the Ci time-frequency 

components of the signal will be linearized (relation (8)) 
and the others will have arbitrary shapes. Consequently, in 
each branch, looking for linear T-F structures, the 
components Wis(t) will be well matched, thanks to their 
linear T-F behaviour. For the other structures, even if they 
are more energetic, the chirplet decomposition 
coefficients will be smaller than the ones corresponding to 
chirplet structures.  

Finally, the estimations obtained from each branch are 
used to generate, by the corresponding modulation, Mi, 
the T-F components. Analysing the variation of the 
correlation degree values λij, (figure 2) by a conjugate 
gradient method, we can estimate the number of 
components for each time-frequency non-linearity type. 
At the end, the WSD algorithm provides the signal 
modelling expressed as :  
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The elementary function ( )( )tijψiM  are completely 

characterized by its instantaneous frequency law (IFL), 
given by : 
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The parameter set, [ ]ijijijijij Dft ,,, 00 βθ = , contains 
the estimation of time and frequency centers, chirp rate 
and signal duration. These estimations are provided by the 
MPCE algorithm. The function mi(t) is directly related to 
the Wi warping operator which allowed to a chirplet 
function ψij. 
 The performing of this algorithm is illustrated on a test 
signal representing an emission of a long-finned pilot 
whale (Globicephala melas). For this example, the 

warping operator battery is composed by some power 
frequency warping operators, defined as  
 

kt /1=kt
W    (11) 

 

where the order k spans the interval 0:0.1:2.  
The results obtained on some significant branches 

(k=0.1,0.3,0.4,0.5,0.6,0.8) are illustrated in the next 
figure. 

 
Figure 3. Chirplet estimation of some warped signals  

 
The results of the warped signal approximation by 

chirplet functions (MPCE) are illustrated. Each warped 
signal will be approximated by eight chirplet functions 
using the algorithm proposed in [8]. In the case of 0.6, 
0.5, 0.4 power warping orders, we observe that one 
dominant linear T-F component appears. It is also 
traduced in the distribution of decomposition coefficients, 
depicted also in figure 3. The existence of this dominant 
chirplet coefficient indicates that it corresponds to the 
power frequency modulations of order 0.6, 0.5 and 0.4, 
respectively. The other chirplet functions, which are less 
energetic, correspond to different PFM types  

For the other warped signals (k=0.1, 0.3, 0.8), the 
decomposition coefficients are energetically reduced. 
Otherwise, the decomposition coefficients have a reduced 
dynamic – figure 3). Consequently, the analyzed signal 
does not contain the assumed non-linear T-F behaviors. 

The analyzed signal makes part from a real 
Globicephala Mellas recording for frequency sampling 
Fs=44.1 kHz. The characterization of the complete test 
signal via the WSD approach is illustrated in the next 
section.  

 
4. RESULTS 

 
In this section, we illustrate the performance of the 

WSD algorithm in the case of two real marine-mammal 
emissions. Firstly, we consider a Globicephala Melas 
observation containing two signals similar to one analyzed 
in figure 3 (and marked in a dashed rectangle in figure 4). 
The results are depicted in the next figure. 



 
Figure 4. WSD vs spectrogram for Globicephala Melas  

 
As the spectrogram, the WSD provides a visual time-

frequency information about the analyzed signal. This 
TFR is generated by taking the WTFR (relation (6)) of the 
extracted components. In addition, the WSD furnishes a 
complementary parametric information (relation (10)) 
concerning the estimated IFLs. For the analyzed 
observation, this information is given in table 1. 

Table 1. Estimated parameters of IFLs of Globicephala 
Melas emission 

 
 

The second test signal is a Dolphin whistle [9]. Using 
the same structure of the WSD algorithm, we obtain the 
T-F image given in figure 6. Obviously, the TFR 
generated by WSD is more accurate than the one provided 
by the spectrogram. Moreover, WSD T-F image is 
accompanied by the parametric information, given in table 
2.   

 
Figure 5. WSD vs spectrogram for Dolphin whistle 

 
Table 2. Estimated parameters of IFLs of Dolphine whistle 

 

5. CONCLUSION 
 

In this paper, we have presented a new method for 
underwater signal characterization in a passive context. 
This method is based on the signal warping operation and 
the estimation, for each deformation, of the virtual linear 
time-frequency structures. Therefore, the signal modeling 
(relation (9)) provides the parametric information about 
the signal. Furthermore, the warping-based TFR of 
estimated components provides visual information about 
the analyzed signal. 
 The examples given for two real-life signals illustrate 
the outlines of WSD method. The most important is the 
efficient combination of both visual and parametric 
information. As observed in figure 4, the T-F images of 
both spectrogram and WSD indicate that the two T-F 
regions contain two apparently similar structures. 
Nevertheless, as indicated in the table 1, the parameters of 
these components have different values. Therefore, this 
example proves the capability of WSD to track the 
variation of T-F parameters. On the other hand, the T-F 
image issued from WSD, which is noisy-free (see figure 
5), provides an intuitive and efficient overview of the 
analyzed phenomenon.  
 In the future works, we intend to apply the proposed 
method, as a feature extraction stage, in underwater signal 
classification. Otherwise, the analytical description of 
IFLs could be used to adapt the classical underwater 
signal processing tools in a more realistic concept.       
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