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ABSTRACT

We consider the problem of A/D conversion for non-bandlimited
signals that have a finite rate of innovation, in particular, the class
of continuous periodic stream of Diracs, characterized by a set of
time positions and weights. Previous research has only consid-
ered the sampling of these signals, ignoring quantization, which
is necessary for any practical application (e.g. UWB, CDMA). In
order to achieve accuracy under quantization, we introduce two
types of oversampling, namely, oversampling in frequency and
oversampling in time. High accuracy is achieved by enforcing
the reconstruction to satisfy either three convex sets of constraints
related to: 1) sampling kernel, 2) quantization and 3) periodic
streams of Diracs which is then said to provide strong consis-
tency or only the first two, providing weak consistency. We pro-
pose three reconstruction algorithms, the first two achieving weak
consistency and the third one achieving strong consistency. For
these three algorithms, respectively, the experimental MSE perfor-
mance for time positions decreases as O(1/R2

t R
3
f ), O(1/R2

t R4
f )

and O(1/R2
t R5

f ), where Rt and Rf are the oversampling ratios
in time and in frequency, respectively. It is also proved theoret-
ically that our reconstruction algorithms satisfying weak consis-
tency achieve an MSE performance of at least O(1/R2

t R3
f ).

1. INTRODUCTION

Recent results in sampling theory [1] have shown that there exist
non-bandlimited signals which can be uniformly sampled at a fi-
nite rate of innovation (finite number of degrees of freedom per
unit time) using an appropriate sampling kernel and then perfectly
reconstructed. In all this previous research work, it has been as-
sumed that no quantization of the samples takes place and thus,
perfect reconstruction can always be achieved. However, the pres-
ence of quantization, which makes perfect reconstruction impos-
sible, is entirely necessary for any practical application involving
this type of signals, such as CDMA, UWB [2] and sensor field
sampling in sensor networks [3].

In this work, we introduce the presence of quantization and in-
vestigate Analog-to-Digital (A/D) conversion of non-bandlimited
signals with finite rate of innovation, which has not been con-
sidered before. Notice that all previous work in A/D conversion
has focused only on bandlimited signals [4]. In this paper, we
focus on the A/D conversion of a continuous periodic stream of
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K Diracs1, characterized by a set of time positions {tk}K−1
k=0 and

weights {ck}K−1
k=0 . We study the reconstruction quality under quan-

tization that can be improved by introducing two types of oversam-
pling: a) oversampling in frequency, determined by the bandwidth
of the low-pass sampling kernel, and b) oversampling in time, de-
termined by the number of samples in time taken from the acquired
filtered signal.

We achieve high accuracy in the reconstruction by enforcing
that the reconstructed signal satisfies three convex sets of con-
straints which are related to: 1) the sampling kernel, 2) the quan-
tization operation itself and 3) the space of continuous periodic
streams of K Diracs. A signal reconstruction satisfying the three
sets is said to provide strong consistency while if it satisfies only
the first two sets it is said to provide weak consistency. We pro-
pose two reconstruction algorithms achieving weak consistency
and which show experimentally an MSE performance for the time
positions2 which decreases as O(1/R2

t R3
f ) and O(1/R2

t R
4
f ), where

Rt and Rf are the oversampling ratios in time and frequency, re-
spectively. We prove that the MSE for these algorithms should
decrease at least as O(1/R2

t R3
f ). We also propose a reconstruc-

tion algorithm achieving strong consistency for which we show
experimentally an MSE performance O(1/R2

t R
5
f ).

This paper is organized as follows. Section 2 introduces the
class of signals given by continuous-time periodic streams of Diracs.
Section 3 defines the concepts of oversampling in time and in fre-
quency. Section 4 introduces weak consistency and strong consis-
tency and proposes three reconstruction algorithms, two of them
achieving weak consistency and the other one achieving strong
consistency. In Section 5, we prove an upper bound for the MSE
performance achieved by weak consistency and in Section 6, we
present several experimental results.

2. SIGNALS WITH FINITE RATE OF INNOVATION

In [1] it was shown that certain non-bandlimited signals having a
finite number of degrees of freedom per unit of time (finite rate of
innovation) can be perfectly reconstructed by sampling them at the
rate of innovation, using sinc or Gaussian sampling kernel.

In this work, we consider periodic streams of K Diracs, that
is, x(t) =

∑
k∈Z

ckδ(t− tk) with period τ , where tk+K = tk +τ
and ck+K = ck, ∀k ∈ Z and δ(t) denotes a Dirac delta function.
This signal has 2K

τ
degrees of freedom per unit of time, since the

1The extension to other types of signals with finite rate of innovation
follows easily from the presented work and it is treated in [5]

2The MSE of the weights can be shown to depend strongly on the MSE
of the time positions and it is studied in [5]
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Fig. 1. A/D conversion of a periodic stream of Diracs (example with 4 Diracs).

only knowledge we need to determine the signal uniquely is K
time positions {tk}K−1

k=0 and K weights {ck}K−1
k=0 . This signal can

be perfectly reconstructed by first applying a sinc sampling kernel
hB(t) = Bsinc(Bt) with bandwidth [−Bπ, Bπ], thus obtaining
y(t) = x(t) ∗ hB(t), and then taking the N uniform samples
{y(nT )}N−1

n=0 , T = τ/N , such that Bτ = 2M + 1 ≥ 2K + 1
and the number of samples is N ≥ 2M + 1. The periodic stream
of K Diracs x(t) can be represented through its Fourier series:

x(t) =
∑
m∈Z

X[m]ej 2πmt
τ , X[m] =

1

τ

K−1∑
k=0

cke−j
2πmtk

τ . (1)

The uniform samples of y(t) are given by:

yn =
M∑

m=−M

X[m]ei 2πmnT
τ where n = 0, . . . , N − 1. (2)

Taking at least 2K + 1 samples {yn}2K+1
n=1 we can first directly

compute the 2K + 1 Fourier coefficients X[m] of the signal x(t),
using a simple DFT. Then, it can be seen from (1) that each ex-

ponential term {uk = e−j
2πtk

τ }K−1
k=0 can be annihilated by a first

order FIR filter Ak(z) = (1− e−j
2πtk

τ z−1). Extension of the fil-

ter order to K results in a filter A(z) =
∏K

k=1(1 − e−j
2πtk

τ z−1)
that annihilates the whole signal [1]. In matrix notation, this can
be represented as:

⎡
⎢⎢⎢⎣

X[0] X[−1] . . . X[−K]
X[1] X[0] . . . X[−(K − 1)]

...
...

. . .
...

X[K] X[K − 1] . . . X[0]

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

A[0]
A[1]

...
A[K]

⎞
⎟⎟⎟⎠ = 0

(3)
where A[i] is the i-th coefficient of the annihilating polynomial.
Thus, if we are given the 2K +1 exact Fourier coefficients, by set-
ting A[0] = 1, we can find the unique solution of (3) which gives
us all the coefficients of the annihilating filter. The roots of the an-

nihilating filter A(z), {uk = e−j
2πtk

τ }K−1
k=0 , reveal the K time po-

sitions {tk}K−1
k=0 , while the corresponding weights {ck}K−1

k=0 can
be directly computed from (1).

All previous steps assume no quantization in amplitude and
hence, no error in the samples {yn}N−1

n=0 , which ensures the ex-
istence of the previous exact solution. In our work we study A/D
conversion for these signals and we consider the operation of quan-
tization (see Fig.(1)) performed on the samples {yn}N−1

n=0 . An ir-
reversible loss of information presented by the quantization error
in amplitude, introduced in the samples {yn}N−1

n=0 , makes the ex-
act recovery of x(t) no longer possible. As explained in Section 3,
oversampling is used to overcome this problem.

3. OVERSAMPLING IN TIME AND FREQUENCY

We propose two types of oversampling to compensate the error
introduced by quantization. The first one (common method) con-
sists of taking more samples of y(t), so that N > 2M + 1. This
introduces an oversampling in time which is measured by ratio
Rt = N

2M+1
.

Notice that we can also perform another additional type of
oversampling by extending the bandwidth of the sampling kernel
to be greater than the rate of innovation, or equivalently 2M +1 >
2K + 1. We denote this type of oversampling as oversampling in
frequency with oversampling ratio Rf = 2M+1

2K+1
.

Therefore, the number of samples is N = (2M + 1)Rt =
(2K + 1)RfRt, which means that N increases linearly with both
oversampling schemes. Both types of oversampling are accuracy-
enhancing, as it is shown theoretically in Section 5 and experimen-
tally in Section 6.

4. CONSISTENT RECONSTRUCTION

In the reconstruction process, we enforce the concept of consistent
reconstruction. The idea of consistent reconstruction is to exploit
all the knowledge from both the a priori properties of the origi-
nal signal and the information provided by the quantization pro-
cess, that is, the quantization bins to which the original samples
{yn}N−1

n=0 belong. Thus, we want to find a reconstruction which
is consistent with all the knowledge we have. It is clear that (on
average) a consistent reconstruction will provide better reconstruc-
tion accuracy than a non-consistent reconstruction. We first define
all the properties that a reconstruction should satisfy in order to
be consistent. Each property defines a set of signals and requiring
satisfaction of a certain property is equivalent to requiring mem-
bership in a certain set of signals. The fact that all properties are
satisfied by the original signal ensures that the corresponding sets
have a nonempty intersection.

The first set of constraints S1 is defined by the quantization
operation which is a deterministic operation. The samples {yn}N−1

n=0

are quantized by a uniform quantizer, that is, yq
n = Q(yn) =

∆(�yn/∆� + 1/2) where ∆ is the quantization stepsize. Let
ln = ∆�y(t)/∆� and cn = [ln, ln +∆). The sequence {yq

n}N−1
n=0

gives us information about the intervals in which all samples lie,
namely, yn ∈ cn. The set of these intervals is N -dimensional
cube and then for y = [y0, . . . , yN−1]

T and yq = Q(y) =
[yq

0 , . . . , yq
N−1]

T it holds that:

y ∈ Q
−1(yq),

as well as all the signals which have samples’ amplitudes within
the same quantization intervals.

The second set of constraints S2 comes from the observation
that the signal y(t) is periodic and bandlimited. Let VB denote the
set of continuous-time periodic signals which are bandlimited to
[−Bπ, Bπ].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 23, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



�
�
�
�

�
�
�
�

�
�
�
�

��������

P
31P P2

(a)

2PP1 P3
��
��
��
��

�
�
�
�

��
��
��
��

(b)

�
�
�
�

��
��
��
��

�
�
�
�
1P P2 P

3

(c)
Fig. 2. Algorithms: a)Small-loop; b)Whole-loop; c)Whole&Small-loop.

By enforcing the previous two sets of constraints we define the
concept of weak consistency as follows.

Definition 1 A reconstruction x̂(t) satisfies weak consistency if
and only if it is obtained from a ŷ(t) that satisfies the following:

1. ŷ(t) is a bandlimited signal, ŷ(t) ∈ VB .
2. the samples {ŷn}N−1

n=0 lie in the same quantization bins as
the original ones {yn}N−1

n=0 , or equivalently, ŷ ∈ Q−1(yq).

In order to impose weak consistency we define the following two
projections.

Projection P1 ([4]) For every estimate ŷi
n, ŷi+1

n = P1(ŷi
n) is

obtained as:
1. if ŷi

n ∈ Q−1(yq
n) then take ŷi+1

n = ŷi
n.

2. else, take ŷi+1
n equal to the bound of the quantization inter-

val Q−1(yq
n) closest to ŷi

n.

Projection P2 Given an estimate ŷi(t), the new estimate ŷi+1(t) =
P2(ŷi(t)) is obtained by low-pass filtering ŷi(t), that is ŷi+1(t) =
ŷi(t) ∗ hB(t).

Projection P2, which is obtained by applying a pseudoinverse
operation, is an orthogonal projection and thus, it is a convex pro-
jection, which means that it finds the closest signal in VB . Pro-
jection P2 may not always give a reconstruction such that after
re-sampling and re-quantization it lies in the same quantization
bins as the original one. This is enforced applying projection P1,
which is convex. Notice that since S1 and S2 are convex sets
and P1 and P2 are convex projections, the Theorem of alternat-
ing projections on convex sets (POCS) [6] can be applied. Starting
from the quantized samples {ŷq

n}N−1
n=0 , by iterating the projections

P1 and P2, it is ensured that we will reach a reconstruction that
belongs to the intersection S1 ∩ S2. Since we are interested in
reconstructing x̂(t), after finding a reconstruction ŷ(t) that satis-
fies weak consistency, we use the annihilating filter based method
explained in Section 2. The process is illustrated in Fig.2(a).

So far, we have not made use of the knowledge about the par-
ticular structure of the signal x(t), namely, the fact that x(t) is
a periodic stream of K Diracs. We define our third set of con-
straints S3 based on this information. Let S3 be defined as a 2K-
dimensional space S3 = {[(t0, c0), (t1, c1), . . . , (tK−1, cK−1)]

T :
tk ∈ [0, τ), tk < tk+1, ck ∈ R, and k = 0, . . . , K − 1} that
uniquely determines the signal x(t) and vice versa. It is straight-
forward to see that this parametric representation of the signal x(t)
results in the convex set constraints. This third set S3 is used in
order to enforce a stronger sense of consistency, which we call
strong consistency and is defined as follows.

Definition 2 A reconstruction x̂(t) satisfies strong consistency if
and only if:

1. it satisfies weak consistency
2. ŷn = hb(t) ∗ x̂(t)|nT where x̂(t) is a periodic stream of K

Diracs.

The concept of strong consistency adds a third property in addition
to the two properties defined by weak consistency, that requires
estimating of time positions and weights and checking whether
the signal ŷ(t) can be obtained by filtering a periodic stream of
Diracs, namely, x̂(t) =

∑K−1
k=0 ĉkδ(t − t̂k).

From the estimated coefficients {X̂(m)}M
m=−M , we estimate

the time positions {tk}K−1
k=0 using a generalized form of (3) where

the left-hand-side matrix has now a size M×L with K ≤ L ≤ M
and L is the filter order. Notice that here we make use of the over-
sampling in frequency by making the order of the filter larger than
K. The solution is found by using the Total Least Squares (TLS)
method [6] which can be shown to be equivalent to performing an
orthogonal (convex) projection in the vector space of polynomi-
als of order L. Thus, in this case the resulting annihilating filter
provides L roots and K of them are ”correct” roots while the ad-
ditional L − K roots are created artificially by the method. There
are several ways to decide what are the positions of the ”correct”
roots. We propose two methods:

1. Choose K roots that are closest to the unit circle. This is
the common solution used for the retrieval of sinusoids in
noise [6]

2. Perform two steps:

(a) Compute roots without increasing the filter order.
(b) Compute roots increasing the filter order and choose

the roots that are the closest to the roots in (a).

Notice that by increasing the filter order, extraneous roots can
be very close to the unit circle and the first method might fail. The
second method does not have this problem and thus, it is the one
we use in our experiments.

If there was no quantization and the estimated {X̂(m)}M
m=−M

coefficients were the exact ones then the chosen roots would all lie
on the unit circle. However, since there is a quantization error then
the next step is to project the obtained roots to the unit circle get-

ting the estimated unit-norm roots ûk = e−j
2πt̂k

τ and from which
we directly estimate the time positions {t̂k}K

k=0. Then, using (1)
we estimate the weights {ĉk}K

k=0. The whole process including
the TLS projection, extracting the correct roots and estimating the
time positions and weights, can be seen as the third projection P3.

Projection P3 Given a set of estimated Fourier coefficients X̂
i
,

the projection P3 provides {(t̂i+1
k , ĉi+1

k )}K−1
k=0 and a set of Fourier

coefficients X̂
i+1

, such that X̂i+1[m] = 1
τ

∑K−1
k=0 ĉi+1

k e−j
2πmt̂

i+1
k

τ .

As argued in [5], for large enough Rt and Rf , this projection

is convex in the sense that X̂
i+1

are the closest Fourier coefficients
to X̂

i
. Therefore, by applying iterated projections P1, P2 and P3

on the corresponding convex sets S1, S2 and S3 we converge to a
reconstruction that lies in the intersection S1 ∩ S2 ∩ S3. We call
this algorithm the Whole-loop algorithm (Fig. 2(b)).

As an extension of the Small-loop algorithm we propose a
Whole & Small-loop algorithm (Fig.2(c)) where after reaching weak
consistency and obtaining the reconstruction x̂(t), we re-process
x̂(t) and re-quantize ŷ(t) checking whether its digital representa-
tion is exactly the same as the one corresponding to the original
signal. This is equivalent to achieving strong consistency. How-
ever, because of the order in which the projections are applied,
this third algorithm is not guaranteed to converge to a reconstruc-
tion satisfying strong consistency (only weak one) and we stop
the algorithm after some predefined number of iterations. On the
contrary, the convergence of the Small-loop and Whole-loop algo-
rithms is theoretically ensured (POCS), and moreover, numerically
speaking, a consistent reconstruction can be approached within a
finite number of iterations.
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5. THEORETICAL PERFORMANCE OF
OVERSAMPLING

Let X = [X[−M ], . . . , X [M ]]T and given X and X̂ , MSE(X , X̂) =∑M
m=−M |X[m]−X̂[m]|2. In the next Theorem, we show that the

MSE for the weak-sense consistent reconstruction does not depend
on the number of Fourier coefficients, or equivalently, on the over-
sampling in frequency Rf while it does depend on the number of
samples taken above the Nyquist rate of y(t), which corresponds
to the oversampling in time Rt.

Theorem 1 Given the periodic stream of Diracs x(t) and corre-
sponding y(t) which has 2M + 1 (M ≥ K) Fourier coefficients
X , there exists an No such that if N ≥ No, there is a constant
c > 0 which depends only on x(t) and not on Rt and Rf , such
that for any weak-sense consistent reconstruction x̂(t) with corre-
sponding ŷ(t) that has coefficients X̂ , the following holds:

MSE(X , X̂) ≤ c

R2
t

.

Proof: see [5].
This Theorem states that even if we estimate more and more

Fourier coefficients (increasing Rf ) while keeping Rt constant,
the upper bound of MSE(X , X̂) remains the same. Clearly,
since we estimate the time positions from Fourier coefficients, the
number of coefficients as well as MSE(X , X̂) directly impact
the accuracy. Using more Fourier coefficients, which involves
increasing Rf , intuitively improves the time positions estimates.
Notice also that MSE(X , X̂) will decrease as we increase Rt

and therefore, MSE(t, t̂) =
∑K−1

k=0 |tk − t̂k|2 will decrease as
we increase both Rt and Rf .

Theorem 2 Given x(t), for any reconstruction x̂(t) obtained us-
ing P3 and which satisfies weak consistency, there exist a ≥ 1 and
b ≥ 1 such that if Rt ≥ a and Rf ≥ b, there is a constant c′ > 0
which depends only on x(t) and not on Rt and Rf , such that the
following holds:

MSE(t, t̂) ≤ c′

R3
fR2

t

. (4)

Proof: see [5].
Theorem 2 describes the advantages that both types of over-

sampling provide for time position estimation. It can be seen that
increasing Rf , we reduce the MSE faster than increasing Rt.

6. EXPERIMENTAL RESULTS

In this section, we show experimental results for the three algo-
rithms illustrated in Fig.(2), with parameters: K = 2, τ = 10,
tk ∈ (0, τ ], ck ∈ [−1, 1]. The positions and the weights are
randomly chosen from the corresponding intervals and the results
are the average over 100 signals. For the ”Small-loop” case, our
numerical results confirm Theorems 1 and 2, with a performance
of O(1/R2

t R
3
f ) (Fig.(3) and Fig.(4)). The other two algorithms

provide a performance of O(1/R2
t R

5
f ) (Fig.(5)) and O(1/R2

t R4
f )

(Fig.(6)), respectively. A clear outperformance over non-consistent
reconstructions (quantization followed by P 2 and P 3) is observed.
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