
GOOD-TURING ESTIMATION OF THE NUMBER OF OPERATING SENSORS:
A LARGE DEVIATIONS ANALYSIS

Cristian Budianu and Lang Tong†

School of Electrical and Computer Engineering,
Cornell University, Ithaca, NY, USA

{cris, ltong}@ece.cornell.edu

ABSTRACT
The paper [1] proposes an estimator for the number of operating
sensors in a wireless sensor network based on the Good-Turing
non-parametric estimator of the missing mass. This paper investi-
gates the performance of this estimator using the theory of large
deviations. We determine the asymptotic behavior of the large
deviations exponent as the ratio n/N between the number of col-
lected samples n and the number of operating sensors N decreases
to zero. The simulations reveal that the confidence intervals ob-
tained using the large deviations formula are upper bounds for the
actual performance of the estimator. Together with the asymptotic
behavior of the exponent, this suggests the surprising fact that if
the scaling law n = f(N) is used for the number of samples, then
reliable estimation can be done if n grows at least as fast as

√
N .

Separately, it is shown that if limN→∞ n√
N

= 0 the estimator
can’t be used.

1. INTRODUCTION

This paper considers the problem of estimating the number of op-
erating sensors in a large wireless sensor network. Usually, af-
ter the sensors are deployed, the number of operating sensors can
vary in time due to battery consumption and/or external factors.
Because the network is designed to function properly with a suffi-
cient fraction of operating sensors, it is necessary to estimate the
number of operating sensors.

We consider Sensor Network with Mobile Access (SENMA)–
an architecture proposed in [2]. In SENMA, mobile access points
with high processing power act as mobile base stations for the sen-
sor nodes as shown in Fig.1. Sensors in SENMA transmit the col-
lected data to the mobile access points. As the mobile access points
collect packets from sensors, we would like to estimate the number
of operating sensors in the network.

We assume that the mobile access points use a random access
protocol such as ALOHA. At the end of the collection process,
the mobile access point receives n packets randomly drawn from
N operating sensors. The basic model considered in this paper
assumes that at most one packet is collected at a time, and each
received packet can come from any of the operating sensors. We
consider the problem of estimating N assuming that each sensor
includes its identity in its packet.
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Fig. 1: The Sensor Network with Mobile Access Point.

As more packets are collected, N can be estimated with arbi-
trary accuracy. Given a performance requirement, the objective is
to collect as few packets as possible. While this is a classical prob-
lem of estimating deterministic parameters, the standard maximum
likelihood estimator leads to a numerical search, possibly in high
dimensions when there are multiple categories of sensors.

In [1], an estimator based on the Good-Turing algorithm [3]
was proposed. The Good-Turing algorithm is a nonparametric
technique that estimates the missing mass based on those samples
that appear only once. This simple estimator has a remarkable
asymptotic performance, close to that of the ML estimator [4].

In this paper, we characterize the asymptotic behavior of the
estimator proposed in [1] using the large deviation theory for the
urn model, [5]. Such an analysis characterizes the decay rate of
the probability that the estimation error exceeds a certain level.
In other words, this analysis provides a guideline for determining
approximately how many packets need to be collected. We de-
termine the asymptotic behavior of the large deviations exponent
as the ratio n/N decreases to zero. Numerical examples coupled
with the exponent analysis revealed that the proposed estimator
has the surprising property that any fixed confidence interval for
its relative error can be achieved asymptotically by collecting only
C
√

N samples, where C is a constant that depends on the confi-
dence interval selected. Moreover, if the scaling law n = f(N)
used for the number of samples is such that limN→∞ n√

N
= ∞,

any confidence interval for the performance of the estimator can be
achieved. Separately, we show that the required number of packets
n should grow at least as fast as

√
N .

2. THE GOOD-TURING ESTIMATOR

Consider a finite or countable set N , a probability distribution P
on this set, and a sample X = (X1, . . . , Xn), where Xi ∈ N are
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i.i.d. random variables with distribution P . For x ∈ N , denote
px

∆
= P{Xi = x} the probability of class x. Note that a uni-

form distribution is not required, besides the fact that N can be an
infinite set.

For the observed sample X, define the function t : N → N,
where t(x) gives the number of samples in X equal to x. Using
the multiplicity function t, we group the classes that appear the
same number of times into sets :

Sk
∆
= {x ∈ N : t(x) = k} .

Note that the function t and the sets Sk are function of the observed
sample X, thus they are random variables. We use the notation

Sk
∆
= |Sk|. Now we define Pk to be the probability that a new

sample, drawn (i.i.d.) with distribution P , belongs to set Sk, Pk
∆
=∑

x∈Sk
px. For k = 0, P0 is the probability that if a new item is

observed, it belongs to a new class. The probability P0 is called
the missing mass and 1 − P0 is called the coverage of sample X.
The probabilities Pk depend on the sample X, and thus are random
variables.

The following estimator for the missing mass, known as Good-
Turing estimator was proposed in [3]

P̂0 =
S1

n
.

This estimator estimated the missing mass using the number of
classes that appear in the sample exactly once.

3. ESTIMATION OF THE NUMBER OF OPERATING
SENSORS

Consider a sensor network having N operating sensors, each of
them being identified by an ID that is an element of set N , with
|N | = N . In this paper N is assumed constant during the collec-
tion time, but unknown. In each time slot the received packet can
belong to any of the sensors with equal probability,i.e.,

∀ x ∈ N : px
∆
= P{Xi = x} =

1

N
.

This model identical to an urn model with replacement.

Denote S
∆
=

∑n
k=1 Sk the total number of ( different ) sensors

that appear in the sample; S0
∆
= N − S represents the number of

operating sensors that do not appear in the current sample. The
problem is to estimate N using the received sample X. Since S is
observed, this is equivalent to estimating S0, the number of sensors
that are hidden to the operator.

The following estimation method for the number of operating
sensors in a sensor network was proposed in [1]. First, use the
Good-Turing formula to obtain P̂0. Then, using the assumption of
equally likely classes, the missing mass is given by P0 = 1 − S

N
.

Using the estimated value of P0, we have the following estimator
for N :

N̂ =
S

1 − P̂0

=
S

1 − S1
n

. (1)

4. PERFORMANCE ANALYSIS

4.1. On the Minimum Number of Samples

The estimated value N̂ can be infinity if the number of collected
samples is lower than N . On the other hand, the simulations

showed that one can obtain accurate estimates using less than N
samples. Thus, we want to see, for large N , how many samples
should one collect such that we have a “small” probability of hav-
ing an infinite estimator ? We have N̂ = ∞ if and only if S1 = n,
more exactly if all the elements of the vector sample X are differ-
ent. We have

P (N)
∆
= P{N̂ = ∞} = P{S1 = n} =

N !

(N − n)!Nn

When N → ∞ and n = f(N) < N , we want to determine those
functions f that satisfy limN→∞ P (N) = 0. The answer is given
by the following proposition ( which is a classical result ).

Proposition 1 Consider n = f(N) < N such that

limN→∞ n
N

= 0. Denoting L
∆
= limN→∞ n2

N
, we have

lim
N→∞

P{N̂ = ∞} =

⎧⎪⎨
⎪⎩

0 if L = ∞
exp

(− 1
2
L

)
if L ∈ (0,∞)

1 if L = 0

.

Proof: Use Stirling approximation of factorial ( Robbins’ sharpen-
ing of Stirling’s formula, [6], p. 39):

√
2πnn+ 1

2 e−n+ 1
12n+1 ≤ n! ≤

√
2πnn+ 1

2 e−n+ 1
12n ,

and elementary limit calculation. �

The proposition says that one needs a sample size that in-
creases with N faster than

√
N in order to guarantee that the prob-

ability of having an infinite estimated value is asymptotically 0.

4.2. Confidence Intervals Using the Large Deviations Approach

Introduce a constant β, and consider that N, n → ∞ such that
n = �βN�. Thus, β is the fraction of sensors that were seen by
the operator. For i = 0, . . . , N denote

γN
i

∆
=

Si

N
,

the fraction of the sensors that appear i times in the current sample.
With these notations, the performance of the estimator proposed
can be written as

N̂

N
=

S

N

1

1 − S1
N

N
n

=
1 − γN

0

1 − γN
1

N
n

We are interested in the probability of the following two events
when N is very large{

N̂

N
> c > 1

}
,

{
N̂

N
< c < 1

}
.

The tool used to evaluate the probability of the events given
above is the large deviations theory for occupancy problems de-
veloped by Dupuis, Nuzman and Whiting in [5]. In the rest of the

paper only the probability of
{

N̂
N

> c > 1
}

is analyzed; the other

event is just discussed briefly.
This theory applied to our problem provides the following

asymptotic result

lim
N→∞

1

N
log P

{
N̂

N
> c

}
= −J(β, c).
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The large deviations exponent J(β, c) is given by the following
constraint minimization problem :

J(β, c) = min
Γ∈F (β,c)

{D(Γ||Pβ)} .

The optimization domain F (β, c) is formed by all discrete dis-
tributions Γ = [γ0, γ1, . . . ] which satisfy

∞∑
i=0

γi = 1,

∞∑
i=0

iγi = β,
1 − γ0

1 − γ1
1
β

≥ c.

The expression D(P ||Q) is the Kullback-Leibler distance between
two distributions, i.e.,

D(P ||Q) =

{∑
i Pi log Pi

Qi
if P 
 Q

∞ otherwise
,

and Pβ is the Poisson distribution with parameter β, i.e., Pβ(i) =

exp(−β)βi

i!
.

The solution to this optimization problem can be found us-
ing Lagrange multipliers [7]. As usual, the Lagrange multipliers
approach implies an optimization that can be solved only numeri-
cally. Except that it can be used for testing, this solution provides
little insight into the problem.

Since usually we are interested in estimating the number of
nodes using as few samples as possible, we consider the asymp-
totic behavior of the exponent J(β, c) as the ratio β → 0. This be-
havior will be investigated by deriving upper and lower bounds for
the exponent that are tight for small values of parameter β. Also,
the simulations reveal that the lower bound derived is tight enough
to derive confidence intervals for the estimator performance.

For Γ ∈ F (β, c), the solution of the optimization problem
given above satisfies the last inequality from the definition of F (β, c)
with equality. For these distributions we have the following bounds
for γ0 and γ1

γ0L
∆
= 1 − β + β2 1

2c + β
≤ γ0 ≤ 1 − β + β2 1

c + β
,

γ1L
∆
= β − β2

c
+

β3

c(2c + β)
≤ γ1 ≤ β − β2

c
+

β3

c(c + β)
.

For c > 1, the optimization region for γ0 and γ1 and the bounds
given above are represented in Fig. 2.

For the case c > 1, we derive upper and lower bounds on the

large deviations exponent. Denote γ̄01L
∆
= 1− γ0L − γ1L, γ̄1L

∆
=

1 − γ1L, P̄β,01 = 1 − Pβ(0) − Pβ(1), and P̄β,1 = 1 − Pβ(1).
The upper bound is obtained by considering a particular value

Γ∗ ∈ F and computing D(Γ||Pβ). The value chosen is the left
corner of the optimization region :

Γ∗ = (γ0L, γ1L, 1 − γ0L − γ1L, 0, . . . ),

which gives

D∗(β, c) = γ0L log
γ0L

Pβ(0)
+ γ1L log

γ1L

Pβ(1)
+ γ̄01L log

γ̄01L

Pβ(2)
.

The lower bound is obtained by finding a convex domain F∗, F ⊂
F∗, such that the optimization problem over F∗ can be obtained in
closed form. The choice made is

F∗ =
{

Γ :
∑

γi = 1, γ0 ≥ γ0L, γ1 ≥ γ1L

}
.

γ011 − β
2

γ0L0

β c−1
c

γ1L

β

1

Fig. 2: The optimization region for γ0 and γ1 and the lower
bounds γ0L and γ1L.

The solution Γ∗ = arg minγ∈F∗ D(Γ||Pβ) provides the lower
bound D∗(β, c). Note that this lower bound is nontrivial only if
Pβ /∈ F∗. The bound is given in the following proposition.

Proposition 2 For any β ∈ [0, 1) and c > β(1+exp(−β))
2(1−exp(−β))

, we have
the following lower bound on the exponent

D∗(β, c) =

⎧⎪⎪⎨
⎪⎪⎩

γ0L log γ0L
Pβ(0)

+ γ1L log γ1L
Pβ(1)

+ γ̄01L log γ̄01L
P̄β,01

if Pβ(0) 1−γ1L
1−Pβ1

< γ0L

γ1L log γ1L
Pβ(1)

+ γ̄1L log γ̄1L
P̄β,1

, otherwise

.

In particular, the bound holds for all c > 1.0821.

The conditions imposed depend on β and c; for each c, it can
be shown that for β in an interval [0, βmax(c)), the condition
Pβ(0) 1−γ1L

1−Pβ1
< γ0L is true. Thus for evaluation of the asymp-

totic behavior of D∗(β, c) we consider the first equation.
The upper and lower bounds are in closed form and their limits

when β → 0 can be calculated. For the choices made, the two
limits are equal, which proves the following theorem.

Theorem 1 We have the following asymptotic behavior of the large
deviations exponent :

lim
β→0

J(β, c)

β2
=

c − 1 − log(c)

2c

∆
= B.

�
Thus, for any fixed, small β there is a large N such that we have

1

N
log P

{
N̂

N
> c

}
≈ −J(β, c) ≈ −β2B.

Although the approach of the proof presented is valid only
for c > 1, the theorem holds identically for the large deviations

exponent associated with
{

N̂
N

< c < 1
}

. In this case, however,

the proof is done using a different approach, mainly because a tight
lower bound can’t be found by the method used above.
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5. SIMULATIONS AND NUMERICAL RESULTS

In Fig. 3 the confidence region for the relative error of the es-
timator is represented for ε = 0.001. More exactly, for N =
16000 and ε = 0.001, the y-axis gives the levels c such that

P̃

{
N̂
N

> c > 1
}

= ε ( upper bound ) and P̃

{
N̂
N

< c < 1
}

= ε

(lower bound), where we denoted by P̃ the observed empirical
probability of an event. For the upper bound, the same quantity c

is derived using the formula 1
N

log P

{
N̂
N

> c > 1
}

= −J(β, c)

and two approximations given by the upper and lower bounds on
the exponent D∗(β, c) and D∗(β, c). One might note that the
curve obtained using D∗ is very close to the curve obtained using
the true exponent function. A complete discussion on the bounds
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Fig. 3: Confidence intervals for the performance of proposed
estimator. The way they were obtained is given in the
legend.

on the exponent is given in [8].
Similar to the plot above, the simulations done for different

parameters (N, β, c, ε), revealed the following remarkable fact

P̃

{
N̂

N
> c

}
< exp (−NJ(β, c)) .

This suggests that the right hand side expression that uses the
large deviations exponent is an upper bound for the true proba-

bility P

{
N̂
N

> c
}

. Using Theorem 1, it follows that for any fixed

confidence interval (c, ε), when N becomes large, one needs to
acquire only

n̄(c, ε) = g(c, ε)
√

N

samples to achieve the desired performance. Moreover, using a
scaling law n = f(N) such that limN→∞ n√

N
= ∞, any confi-

dence interval for the performance of the estimator can be achieved.
The simulations confirm this statement. For example, if N ∈
[2000, 64000], c = 1.12 and ε = 1.001, the ratio n̄√

N
∈ (37, 40.5).

The constant obtained is smaller than the one implied by the result

of Theorem 1 because of the upper bound effect. The same discus-

sion holds for the event
{

N̂
N

< c < 1
}

.

6. CONCLUSIONS

The performance of the estimator of the number of operating sen-
sors based on the Good-Turing estimator is analyzed. First, we
showed that one needs the number of samples n to grow faster
than

√
N in order to be able to use this estimator. Then, using

the theory of large deviations we derived the behavior of the expo-
nent for small ratios n/N . Although suggested by this asymptotic
behavior, the simulations revealed the surprising fact that if the
law of the number of samples satisfies limN→∞ n√

N
= ∞ then

arbitrary performance can be achieved asymptotically. Thus, the
performance of the estimator under study exhibits a phase transi-
tion for the scaling laws of the number of samples n = f(N) that
satisfy limN→∞ n√

N
∈ (0,∞).
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