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ABSTRACT

Multimodal sensing has attracted much attention in solving a
wide range of problems, including target detection, tracking, 
classification, activity understanding, speech recognition, etc. In
surveillance applications, different types of sensors, such as 
video and acoustic sensors, provide distinct observations of on-
going activities. In this paper, we present a fusion framework 
using both video and acoustic sensors for vehicle detection and 
tracking. In the detection phase, a rough estimate of target 
direction-of-arrival (DOA) was first obtained using acoustic data 
through beam-forming techniques. This initial DOA estimate
designates approximate target location in video. Given the
initial target position, the DOA is refined by moving target
detection using the video data. Markov Chain Monte Carlo
techniques are then used for joint audio-visual tracking. A novel 
fusion approach has been proposed for tracking, based on
different characteristics of audio and visual trackers.
Experimental results using both synthetic and real data are 
presented. Improved tracking performance has been observed by
fusing the empirical posterior probability density functions
obtained using both types of sensors. 

1. INTRODUCTION 

Joint audio-visual tracking has attracted much attention recently
e.g. [1, 2]. However, it’s not clear how to efficiently fuse audio 
and visual data for outdoor scenarios using low quality video
and acoustic sensors. In this paper, we present a computational 
framework for joint audio-visual vehicle detection and tracking 
using Markov Chain Monte Carlo (MCMC) techniques. Low
quality cameras with narrow field of view were used as video 
sensing devices. A novel fusion approach has been proposed for
tracking, according to different characteristics of audio and
visual trackers. Given a ground vehicle, its direction-of-arrival 
(DOA), heading direction and ratio of speed to its range are 
parameters which describe its position and dynamics. Both video 
cameras and acoustic array have been used as sensing devices to 
estimate these parameters. Each type of sensors has its own 
advantages as well as disadvantages. Acoustic array has 
complete field of sensing (360 degrees) and beam-forming
techniques are ready for a rough estimate the DOA. However,
tracking accuracy using acoustic array is limited and it has
difficulties to identify the number of the vehicles in the field.
Video cameras provide accurate DOA estimates and can easily
find out the number of moving targets, but it has limited field of

view. The estimation of vehicle heading direction is usually
difficult when the target image size is small and no enough 
features can be extracted and reliably tracked. These
disadvantages become dominate when low quality video and 
acoustic sensors are used in outdoor environments. In this paper, 
we propose a data fusion framework based on the Markov Chain
Monte Carlo techniques. It combines detection and tracking
results from co-centered acoustic array and video camera. By
using both synthetic and real data, we have shown that the 
proposed fusion framework improves the overall vehicle 
detection and tracking performance.

2. SENSOR AND SYSTEM MODELS 

The acoustic array we used contains a number of sensors
uniformly distributed along a circular track. The camera center
coincides with the circular acoustic array center. We assume the 
full knowledge of the sensor calibrations, such as camera focal
length, sensor number and locations as well as the size of the 
acoustic array.

2.1. Acoustic Sensors
Let P be the number of acoustic sensors and K the number of 
vehicles in the field. Following the notation in [3, 5], the state
parameters for the kth target at time instant t is given by
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where k(t), qk(t) and k(t) are the DOA, logarithmic ratio of the 
kth target speed to its range, and the target heading direction,
respectively. DOA is measured clockwise from the Y axis, while 
the heading directions counter clockwise from the X axis. Figure
1 shows the geometry of the problem with both video and
acoustic sensors, where p(t) is the vehicle position at time t.
Using an acoustic array, a steering vector describes the complex
array response for a target at DOA . The steering vector of the 
kth target is given by
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and k=(1/c)[cos( k),sin( k)]
T. zl is the lth acoustic sensor 

location. c is sound speed. The array output for chirp signals is 
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where n(t) is an additive observation noise and s(t) is the signal 
vector. D(t) is formed by the steering vectors of different targets. 

D(t)=[d( 1(t))  d( k(t))]                                        (4) 



X

Y
)( ttk

)( ttk

Acoustic

sensors

Video Camera

)( ttp

)(tp

v

Figure 1. Sensor geometry and target motion parameters 

2.2. Video Camera 
Vehicles moving on the ground plane are tracked by static 
cameras. Based on this context knowledge, three parameters are 
used to describe the target motion in the image plane, 
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where s is the scaling factor, representing the size changes of the
target on the image plane. It is determined by the distance of the 
target from the camera. (a,b) are the translation of the target in
the horizontal and vertical directions in the image plane. 
Suppose that at the initial time instant the image coordinate of a
point on the target being tracked is (u0, v0).  Then, the image
coordinate of the same point on the vehicle after motion at time t

is given by
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Given the target position in the image plane, which is the 
centroid of the target bounding box, it is straightforward to find 
out the target DOA. Assume the image coordinate of the target
centroid is (u,v), the related DOA is given by
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with f being the focal length of the camera. Assume that over a 
small time interval t, the vehicle translation along the Y axis
(camera looking direction) is small, then the logarithmic ratio of 
the target speed to its range can be approximated by

)log()log( ftdq                                 (8) 

where d is the centroid displacement over t.

3. VEHICLE DETECTION 

Vehicle detection is achieved by fusing detection results from 
both acoustic and video processing. The fusion framework is 
illustrated by Figure 2. At first, rough DOA estimates are
obtained by using narrow-band beam-forming techniques such 
as multiple signal classification (MUSIC). At the same time,
image background of the video camera is modeled by a mixed-
Gaussian distribution. Since our video and acoustic sensors are 
co-centered, this rough DOA from acoustic processing 
corresponds to a vertical strip in the images captured by the 
video camera. By applying background subtraction to this 
vertical strip in the image, moving vehicles can be detected so
that refined DOA estimates can be obtained.

Acoustic Array

Beam-forming

Video Camera

Background Modeling
and Subtraction

Rough DOA
Estimates

Refined DOA
Estimates

Figure 2. Fusion for target detection

4. TRACKING 

Once targets are detected, both acoustic data and video are used
for target tracking. According to the data sampling difference 
between video and acoustic sensor, the tracking results from 
different sensors are informed to each other as guidance for 
target tracking in the next time instant. Both acoustic and video
tracking deploy MCMC techniques such as particle filter to 
achieve robustness against observation. For acoustic tracking, 
we utilized an implementation of the algorithms described by
[5].

4.1. Video Tracking
We developed a video tracking algorithm using a motion-
encoded particle filter [6]. In the motion-encoded particle filter, 
motion detection is applied to guide the particle distributions for
target tracking from one time instant to the next. Assume that at
time t, target k is tracked by particles {x(i)} with weights {w(i)}.
To continue tracking at time t+1, ni predicted particles will be 
drawn based on x(i), according to the state dynamics. ni is 
proportional to w(i), the corresponding weight of x(i). Suppose 
that there are m potential objects detected by background 
subtraction technique. They indicate possible locations of this
targets at time t+1. Hence, the ni predicted particles generated 
from x(i) should be distributed among these m candidates 
according to certain distribution. Let ni

(j) be the number of 
particles assigned to potential target j, j=1,…,m and ni

(j) can be
computed by
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where dj is the Euclidean distance between the center of the jth

potential target and that of the target being tracked  by x(i) at time
t. ni

(j)  is proportional to a distribution p(dj), which could be a 
truncated Gaussian with zero mean. Intuitively, the closer the 
potential target is to the current target position represented by
x(i), the more likely this is the right target and more particles 
should be assigned to this potential target.

4.2. Tracking Fusion
Observation noises have different effects on acoustic and visual
tracking.  For example, in our experiments, we have observed 
larger variances presented in the empirical pdf of DOA obtained 
using acoustic data, comparing with video tracking. On the other 
hand, video tracking can be disturbed easily by things such
occlusion, low contrast between background and vehicle, which 
might occur fairly often in real scenarios. Therefore, the fusion
goal is to improve the tracking accuracy, with the ability to 
combat target occlusion.  The following fusion approach has
been used to achieve this goal. Initially, targets are tracked
separately using acoustic and video data. The tracking fusion
occurs periodically with a period of T. Let {xv,t

(i),wv,t
(i)} and 

{xa,t
(i), wa,t

(i)} be the target motion parameter samples and weights
at time t from video and acoustic tracking, respectively. The
fusion contains two steps. First, video motion estimates at 



previous time instant t-1 are used in the prediction of acoustic
tracking (as illustrated by Figure 3).  Then, the weights of these 
new samples are evaluated using acoustic data. Equation (7) and 
(8) are used to convert video motion parameters to acoustic 
motion parameters. In our implementation, half new acoustic 
motion samples are obtained based on the video motion samples 
and the other half are drawn based on previous acoustic motion
samples. Let N be the number of particles used in acoustic
tracking. The detailed algorithm for fusing video tracking results 
in acoustic tracking is as follows. Acoustic Tracking

Video Tracking
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Figure 3. One fusion snapshot at T during tracking

Figure 4. Detected targets from videos 

When a vehicle is occluded visually, the tracking will be solely
performed using acoustic data. Similarly, no acoustic data will 
be observed when the vehicle stopped with engine turned off and 
only video data will be used. 

5. EXPERIMENT RESUTLS 

Both synthetic and real data have been used to test the proposed
fusion framework for target detection and tracking using 
acoustic and video sensors. Synthetic videos were produced
through the projection of 3D vehicle models to the image plane
based on the model position in 3D space. Assuming Lambertian
surfaces, texture maps of the vehicles with any desired viewing
and lighting angles can be produced. Given camera and acoustic 
array calibration, the visual and audio data of one or more 
vehicles at any position along pre-designated tracks can be 
easily created.  In one of our experiments, two vehicles traveled
across the field of view of the camera. The truck moves away
from the camera and the tank toward the camera. A total of 180 
frames of video and audio data were generated. In this
experiment, the video algorithm detected these vehicles and sent
the counts and initial state estimates to the acoustic processing 
algorithm. Then the acoustic processing algorithm used the 
initial state input from the camera and kept tracking of these two 
vehicles. Figure 4 shows the detection results and the related 
templates, marked by bounding boxes and labeled by target IDs.
Table 1 gives the initial estimates and ground-truth values of the
DOAs, heading angles and relative speeds of these two targets.

Table 1: Initial Estimates from Video and Ground Truth of 
Acoustic State Parameters for Target 1 (T1) and Target 2 (T2) 

One example using real data is also included in this paper. 
Figure 5 shows a bird’s eye-view of the monitored field, with the
trajectory of a vehicle moving from upper-left to lower-right. 
The arrow indicates the camera looking direction.  The camera
has a narrow vertical field of view of 5.15 . The pixel size of the
images is 480 720. The acoustic array contains 4 sensors, with 
a diameter of one meter. Video and acoustic data collected over 
ten seconds were used to test the algorithm. Figure 6 shows the
vehicle detection and tracking using video. The empirical
posterior probability density functions (pdf) of the DOA at the
last time instant using acoustic data, video and after sensor 
fusion are shown in figure 7 from top to bottom, respectively.
The minimum mean square error (MMSE) estimates of DOA at 
different time can be found by computing the conditional mean
of the corresponding empirical pdf (Figure 8). It can be clearly
seen that the MMSE estimates with sensor fusion are the closest
to the ground truth. The performance improvement on target 
heading direction and the ratio of speed to target range is not 
obvious by fusing both types of sensors. It is not surprising since 
these two parameters are related to the velocity of the vehicle, 
which is a higher order motion parameter, comparing with DOA.
One of the reasons for no obvious improvement from fusion is 
the lack of accurate mapping between acoustic and video

T1:
Initial Estimates /Ground 
Truth

T2:

-9.3 /-10.79 1 /0.097
q -3.69/-3.37 -3.62/-3.40

Uniformly distributed in
[-45 ,45 ]/ 37.79

Uniformly distributed in 
[-45,45]/ -39.85

Fusion of Video Motion Samples and Weights in
Acoustic Tracking

1. Transform parameters. Suppose the initial position of the 
current tracked target is (u0, v0). For video motion 
sample, xv,t-1
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3. Add dynamic noises to these samples to obtain prediction 
of acoustic motion sample at time t.



tracking along the dimension of these two parameters in the state
space.

6. CONCLUSIONS 

A sensor fusion framework for vehicle detection and tracking
using video and acoustic data is presented in this paper. Due to 
the sensor fusion, the detection takes advantages of both the
omni-direction sensing field of the acoustic sensors as well as 
the detection accuracy of the video camera. Video motion
samples are deployed to guide the prediction step in acoustic 
tracking. Improved DOA estimates have been obtained by using 
the proposed fusion framework. 
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Figure 5: Vehicle trajectory and sensor location (arrow starting 
point) and camera looking direction (arrow direction) 

Figure 6: Video tracking results 

Figure 7: Empirical pdf of DOA using acoustic (top), video data 
(middle) and after fusion (bottom) at the last time instant

Figure 8. MMSE estimates before and after sensor fusion
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