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ABSTRACT

We consider the problem of optimal allocation of resources be-
tween training and data for transmission over a Gauss-Markov fad-
ing channel. Inaccurate channel state information (CSI) is avail-
able at the receiver through periodic training. There is no feedback
so that CSI is not available at the transmitter. We study MMSE es-
timators that predict the current channel state based on: all past
pilot observations, only the most recent pilot observation, and the
most recent and next in the future pilot observations. We analyze
the optimal training energy and periodicity for each of these es-
timators. We show that optimizing the energy and periodicity of
training results in significant energy savings over a sensible, but
unoptimized, approach, particularly for rapidly varying channels.

1. INTRODUCTION

Practical communication systems devote part of their power and
bandwidth resources to training. Increasing the power (or band-
width) allocated to training improves the channel estimate, but de-
creases the power (bandwidth) available for data transmission. We
expect that if the channel varies more rapidly, the frequency of
training would have to be increased, and if the channel is noisier,
the training energy would have to be increased. But channel MSE
translates non-linearly into uncoded bit error rate (BER), and com-
puting the impact on coded BER is difficult. To understand these
fundamental tradeoffs, we use the cutoff rate as a metric.

The channel cutoff rate Ro is an information-theoretic metric
([16], [12]) that has the following features: it is a lower bound on
the channel capacity, and as such, Ro indicates a range of rates
R over which reliable communication is possible, 0 < R < Ro.
Secondly, Ro gives a meaningful bound on the error performance
Pe of N -length block coding (at any R < Ro) via the expression
Pe ≤ 2−N(R−Ro). Although rates above Ro are attainable [4],
the cutoff rate is still regarded as a “practical channel capacity” for
simple encoding/decoding strategies. For example, Ro has been
proven to play exactly this role for sequential decoding [2].

Previous works have considered the cutoff rate of systems op-
erating over the Rayleigh fading channel under the assumption that
either perfect channel state information (CSI) or no CSI is avail-
able at the receiver. The cutoff rate with perfect CSI has been
examined for i.i.d. fading in [11], and for temporally correlated
fading in [5]. The cutoff rate with no CSI can be found in [10].

In the practical case of imperfect receiver CSI, one way to
characterize reliable rates, and define optimized estimation pa-
rameters, is to first fix a particular channel estimation scheme (or
“front end”), and then maximize the information theoretic metric

of interest (e.g., cutoff rate or mutual information) over the rele-
vant system design parameters. This simplifying approach is used
in both [9] and [13] for a training-based, minimum mean square
error (MMSE) channel estimation front-end. In both cases, the
authors have considered the mutual information metric.

We consider a periodic training scheme as in [13]. Pilot sym-
bols are sent periodically to provide (inaccurate) estimates of the
flat-fading channel coefficient. Knowledge of the channel correla-
tion allows us to predict the fading channel between pilot symbols.
We consider MMSE channel predictors that use: (a) the last pilot;
(b) all of the past pilots; (c) the last and next pilot (non-causal). In
[15], we provided preliminary results for the first estimator. Us-
ing the cutoff rate as a metric, we address the following issues:
What is the optimal energy allocation between data and training?
What is the optimal training frequency? To illustrate the approach,
we focus on a first-order Gauss-Markov model that has often been
used to characterize fading channels. We quantify our results in
terms of an α parameter that measures how rapidly the channel is
fading (α = 0 corresponds to i.i.d. fading, and α = 1 to a static
channel). Our key findings are summarized in Section 5.

2. SYSTEM MODEL

We describe the channel model, the training scheme, and the chan-
nel estimation algorithm.

2.1. The Gauss-Markov Channel

The channel of interest is a Rayleigh flat fading model. We con-
sider the first order Gauss-Markov fading channel described via

hk = αhk−1 + zk (state),

yk =
√

Ekhksk + nk (observation), (1)

where k denotes discrete time, hk ∼ CN (0, σ2
h) models fading,

0 < α < 1 describes the channel correlation and is related to the
normalized Doppler spread; zk ∼ CN (0, σ2

h(1 − α2)) is driving
noise, yk is the signal at the receiver, Ek is the energy of the k-th
symbol, nk ∼ CN (0, σ2

N ) models AWGN1, and sk ∈ {−1, +1}
is BPSK modulation. We assume that σ2

N , σ2
h �= 0.

2.2. Channel Estimation

To obtain (imperfect) CSI at the receiver, a single pilot symbol is
inserted periodically into the symbol stream with period T . Pe-
riodic pilot placement is natural given the wide-sense stationarity

1CN (
µ, σ2

)
denotes a complex Gaussian random variable with mean

µ, and independent real and imaginary parts, each with variance σ2/2.
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of the channel. Motivation for inserting a single pilot at a time,
rather than several, may be found in [6], [1], and [7]. Periodic
pilot placement implies that smT = +1, and suggests periodic
energy allocation, i.e., Ek = Ek mod T .

We consider three different MMSE channel estimators:

E1. The Q(1,0) estimator uses only the most recent pilot obser-
vation to predict the subsequent T−1 channel states before
the next pilot, i.e., the channel estimate � positions after the
most recent pilot is given by ĥmT+� = E [hmT+�|ymT ] .

E2. The Q(∞,0) estimator uses all past pilots to predict the cur-

rent channel state, i.e., ĥmT+� = E
[
hmT+�| {ypT }m

p=−∞
]
.

This estimator is readily implemented as a Kalman filter.

E3. The Q(1,1) estimator is a non-causal smoother which uses
the last and “next” pilot observations to predict the current
channel state, i.e., ĥmT+� = E [

hmT+�|ymT , y(m+1)T

]
.

We can rewrite the system equation (1) explicitly in terms of
the channel estimate ĥk and estimation error h̃k:

yk =
√

E�k/T� ĥk sk +
√

E�k/T� h̃k sk + nk. (2)

The use of an MMSE estimator in E1-E3 implies that the chan-
nel estimate and estimation error are Gaussian and orthogonal, so
that ĥk ∼ CN (

0, σ̂2
k

)
and h̃k ∼ CN (

0, σ2
h − σ̂2

k

)
. We assume

that perfect interleaving is employed, so that ĥk and h̃k are i.i.d.
sequences in k and with respect to each other [3]. The receiver
employs an ML-decoder that treats the channel estimate ĥk as if
it were the true channel, thereby treating the estimation error as
AWGN. Indeed, for the BPSK sk, the estimation error is indepen-
dent of sk and manifests itself as a simple SNR loss.

It will be useful to define the estimator quality ω� as

ω� � σ̂2
� /σ2

h , (3)

which is a function of the particular estimator used and of the time
index (� mod T ) relative to the last pilot; it completely captures
the estimator performance. The cases of ω� = 0 and ω� = 1
correspond to no CSI and perfect CSI respectively. Let

κ0 � σ2
hE0/σ2

N and κ� � σ2
hE�/σ2

N ,

denote the faded pilot and data energies. Then the estimator qual-
ity, ω

(x,y)
� , for the estimator Q(x,y) is given by

ω
(1,0)
� = α2� κ0

1 + κ0
, (4)

ω
(∞,0)
� = α2�

κ0 − 1 +
√

(1 + κ0)2 + 4κ0
α2T

1−α2T

κ0 + 1 +
√

(1 + κ0)2 + 4κ0
α2T

1−α2T

, (5)

ω
(1,1)
� = (Γ2

(�) + Γ2
(T−�))(κ

2
0 + κ0) + 2κ2

0Γ(�)Γ(T−�)α
T (6)

where Γ(k) � αk(κ0 + 1) − α2T−kκ0

(κ0 + 1)2 − κ2
0α

2T
.

Space limitations preclude us from including proofs, which may
be found in [14]. The quality of the Q(1,0) and Q(∞,0) esti-
mators decreases monotonically with �, i.e., distance from the last
pilot; the quality of the Q(1,1) estimator is symmetric, with worst
performance midway between the two pilots.

3. CUTOFF RATE

The cutoff rate for equiprobable BPSK modulation with perfect
interleaving. is given by (we consider the general input, uninter-
leaved case in [14]):

Ro = − 1

T

T−1∑
�=1

log2

1

4

∑
S∈{−1,1}

∑
V∈{−1,1}

× Eĥ�

[∫
y�

√
P (y�|S, ĥ�)P (y�|V, ĥ�)dy�

]
, (7)

where Eĥ�
denotes expectation w.r.t. the pdf of the channel esti-

mate, ĥ�, and P (y�|s�, ĥ�) is the pdf of the received signal, condi-
tioned upon the transmitted signal and the channel estimate.

Evaluating (7), we find the cutoff rate to be

Ro = − 1

T

T−1∑
�=1

log2

{
1

2
+

1

2

[
1 + κ�(1 − ω�)

1 + κ�

]}
. (8)

For simplicity, we consider the case where all the data slots have
the same energy, E� = E1, � = 1, ..., T − 1; the general case
is considered in [14]. The cutoff rate (8) is valid for each of
the estimators in E1-E3 by using the appropriate expression for
the estimator quality as given in (4) to (6). More generally, we
show in [14] that (8) is valid for all MMSE estimators of the form

ĥmT+� = E
[
hmT+�| {ypT }p∈P

]
, where P ⊂ Z , and where the

associated estimator quality ω� must be determined.
Since Ro is an (increasing) function of ω�, it is useful to com-

pare the estimator quality expressions in (4) to (6). It can be veri-
fied that ω(1,0)

� ≤ ω
(∞,0)
� , that ω

(1,0)
� ≤ ω

(1,1)
� , and that no similar

inequality can be given between ω
(∞,0)
� and ω

(1,1)
� . In the high

SNR regime (κ0 → ∞), ω
(1,0)
� → ω

(∞,0)
� . This is because the

channel is learnt perfectly in each pilot slot, and so additional past
pilots do not improve the estimator. For a rapidly fading channel,
as α → 0, ω

(1,0)
� → ω

(∞,0)
� , since it is the most recent pilot that

provides most of the information about the channel state. For a
nearly static channel, i.e., as α → 1, ω

(∞,0)
� > ω

(1,1)
� . This is be-

cause the Q(∞,0) estimator provides an infinite number of noisy
looks at the static channel, whereas the Q(1,1) estimator provides

only two noisy looks. Further, ω
(∞,0)
� < ω

(1,1)
� if the channel is

varying rapidly or the SNR is large : When α → 0, it is the closest
pilots that contain channel information; the Q(1,1) provides two
“close” pilots. As κ0 → ∞, the Q(∞,0) estimator converges to
the Q(1,0) estimator, which is outperformed by the Q(1,1) estima-
tor. Lastly, we note that all three estimators become equivalent for
high-SNR static channels, i.e., as α → 1 and κ0 → ∞.

4. OPTIMAL ENERGY ALLOCATION AND TRAINING
PERIOD

We study the optimal energy allocation (κ∗
0,κ∗

1) and training pe-
riod T ∗ for the estimators E1-E3. For a meaningful analysis, we
impose a total energy constraint, κ0+(T−1)κ1 = κavT . First, we
find (κ∗

0,κ∗
1) for a fixed T . Then, we consider the optimal value

of T . The cutoff rate is given by (8), where w� is given by (4), (5),
or (6). Space limitations preclude us from including proofs, which
may be found in [14].
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4.1. Optimal Energy Allocation

Assume that the training period T is fixed, and let κtot := κavT .
For the Q(1,0) estimator, we have previously found κ∗

1 as [15]

κ∗
1 = Γ −

√
Γ2 − κtot

T − 1
Γ, Γ =

κtot + 1

T − 2
, (9)

for T > 2. For T = 2, κ∗
1 = κ∗

0 = κtot/2. Note that κ∗
1 does

not depend on α, however Ro(κ∗
1) does. In the low energy regime

(κtot → 0), (9) leads to κ∗
0 = κtot

2
, i.e., half of the available

energy should be allocated to the pilot symbol. In the high energy

regime, (κtot → ∞), we find that κ∗
0 = κtot

[√
T−1−1
T−2

]
. For large

T , the energy allocated to the training symbol decays as T−1/2.
For the Q(∞,0) estimator, the optimal training energy κ∗

0 is
given implicitly by (for T > 2)

κ∗
0 = max

0≤κ0≤κtot

[ κtot−κ0

κtot − κ0 + (T − 1)

]
×

κ0 − 1 +
√

(1 + κ0)2 + 4κ0
α2T

1−α2T

κ0 + 1 +
√

(1 + κ0)2 + 4κ0
α2T

1−α2T

. (10)

This implicit solution provides useful insights. In the low energy
regime, (10) states that κ∗

0 = κtot
2

. In the high energy regime,

κ∗
0 = κtot

[√
T−1−1
T−2

]
. In these two limiting cases, the Q(∞,0) and

Q(1,0) estimators have the same optimal energy allocation, which
is independent of α. In general, κ∗

0 decreases as α (which is a
measure of channel predictability) increases: As α → 1, κ∗

0 =
0. This is because, the Q(∞,0) estimator provides us with an
infinite number of (noisy) observations of the nearly time-invariant
channel. Each observation requires only a minuscule amount of
energy, in order to make use of the infinite diversity gain. As α →
0, κ∗

0 converges to the κ∗
0 of (9) : for a rapidly fading channel, the

most recent pilot provides all the information about the channel.
For a general κtot and α, κ∗

0,(∞,0) ≤ κ∗
0,(1,0); the estimator of

higher quality requires less training energy.

Lastly, we give κ∗
0 for the ω

(1,1)
� estimator. For simplicity,

we consider the case where T > 2. Because no closed form ex-
pression for κ0 exists in general, we will focus on the low en-
ergy and high energy regimes. The optimal training energy κ∗

0 in
the low SNR regime can again be shown to be given by κ∗

0 =
κtot
2

. In the high SNR regime, we consider separately the cases
of large and small α. For α � 1, we find once again that κ∗

0 =

κtot

[√
T−1−1
T−2

]
. However, when α ≈ 1, it can be shown that

γ1 +
√

γ2
1 − γ1 ≤ κ∗

0/κtot ≤ γ2 +
√

γ2
2 − γ2, (11)

where γ1 = T2+ mod (T,2)

−2T3+3T2+ mod (T,2)
and γ2 = T2−2T+2

−T3+2T2−2T+2
.

Comparing the RHS of (11) and the preceding expression for κ∗
0

when α is small, it is seen that, at high SNR, κ∗
0 decreases as the

channel predictability α increases. This is verified by numerical
evaluation for all values of SNR. We can show that as T becomes
large, the upper bound becomes tight, and the optimal training en-
ergy at high SNR (for any α) is again given by κ0 = 1/

√
T .

Lastly, we note that κ∗
0,(1,1) ≤ κ∗

0,(1,0); i.e., the better estimator
requires less training energy.

T∗
(1,0) T∗

(∞,0)

TB,(∞,0)
TB,(1,0) T∗

(1,1) TB,(1,1)

α = 0.80

κav = 1 3 3 3 4 4

κav = 10 3 3 3 4 4

κav = 100 3 3 3 4 4

α = 0.95

κav = 1 8 5 5 10 7

κav = 10 5 5 5 7 7

κav = 100 5 5 5 7 7

α = 0.99

κav = 1 20 11 9 29 15

κav = 10 11 10 9 17 15

κav = 100 9 9 9 15 15

Table 1. Comparing the optimal training period T ∗
(.,.) to the lower

bound TB,(.,.) for several different value of α and κav.

4.2. Optimal Training Period

The preceding analysis gives insights into the optimal energy allo-
cation (κ∗

0,κ∗
1) for a fixed training period T . Below, we consider

the optimal training period T ∗ for each estimator.
A lower bound on the optimal value of the training period TB

can be found by considering the high energy regime (κav → ∞),
which is equivalent to assuming that the channel is known per-
fectly in the relevant training slots. The expression for TB is given
below for each of the three estimators.

For the Q(1,0) and Q(∞,0) estimators (and more generally,
for all causal estimators, see [14]), the lower bound is the same,
depends only on α, and is given by:

TB,(1,0) = TB,(∞,0) = arg min
T

T−1∏
�=1

[
1 − α2�

2

]1/T

.

Although the high-SNR bounds are equal, it can be shown that, in
general, T ∗

(1,0) ≥ T ∗
(∞,0). The better estimation scheme requires

more frequent pilots. This was noted heuristically in [13]. Here, it
can be proved analytically by substituting both (4) and (5) into (8)
and comparing the results. Note however that the better estimator
achieves a higher cutoff rate, as would be expected. For the Q(1,1)

estimator, the lower bound is

TB,(1,1) = arg max
T

T−1∏
�=1

[
1 +

1

2

2α2T − α2� − α2(T−�)

1 − α2T

]−1/T

.

It can be shown that TB,(1,1) ≥ TB,(∞,0) = TB,(1,0) and that
T ∗

(1,0) ≤ T ∗
(1,1). Unlike the previous case, we find that the better

estimation scheme requires less frequent training. This apparent
conflict is resolved by noting that the training period is not deter-
mined by the quality ω� of the estimation scheme, but rather, by
how quickly ω� “falls off” as � is increased. We remark that the
metric of interest is the average cutoff rate, not the frequency of
training, and that our metric takes into account the training over-
head. Table 1 compares TB to T ∗ for each estimator, for several
values of κav and α. In general, the bound is accurate for high SNR
(larger κav) rapidly varying channels (smaller α). From the table,
when α = 0.80, the lower bound is exact for all κav ≥ 1. For
α = 0.95, the lower bound is exact for κav ≥ 10. For α = 0.99,
the lower bound is tight for κav ≥ 10, and exact for κav ≥ 100.

4.3. Cutoff Rate with Optimized Training

First, we analyze how using each of the three proposed estimators
affects the unoptimized cutoff rate; see Figure 1. We use the same
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energy κav in each transmission slot, and pick a fixed, but rea-
sonable, value for the training period (T = 10) based on Table 1
when α = 0.99. At low SNR, there is a 3 dB gain in the cutoff rate
for the Q(∞,0) estimator over the Q(1,0). As expected, this gain
diminishes as SNR is increased. Also as expected, the Q(1,1) es-
timator outperforms the other two at high SNR. The gain in using
the Q(1,1) estimator over the other two is as much as 3 dB at low
to moderate SNR. As SNR → ∞, the cutoff rate for the Q(1,1)

estimator saturates to 0.8514; a value that exceeds the saturation
cutoff rate of 0.7829 for either of the other two estimators.

Next, we analyze how using each of three proposed estimators
affects the optimized cutoff rate. In Figure 2, we plot the cutoff
rate, optimized over the energy allocation (κ0,κ1) and training
period T . Note that optimizing the training period effectively nar-
rows the gain of the more complicated estimators over the Q(1,0)

estimator. In particular, the Q(1,0) and Q(∞,0) estimators perform
within 1 dB of each other. At high SNR, the optimized energy al-
location provides no gain; even a “sloppy” energy allocation will
allow the cutoff rate to saturate to its maximum value. A poor
choice of T will result in a large loss in the cutoff rate relative to
the optimized value, even at high SNR.

From Figs. 1-2, we determine the gain in cutoff rate attained
by using optimized training parameters in place of the unoptimized
(but reasonable) parameters. The gain is typically between 3 ∼ 4
dB at low SNR for the Q(1,0) estimator, 2 ∼ 3 dB for the Q(1,1)

estimator, and ∼ 0.5 dB for the Q(∞,0) estimator. The gain in
using optimized parameters diminishes as the estimation scheme
uses more pilot symbols. In this case, as more pilot observations
are exploited, the less the cutoff rate benefits from an optimized
energy allocation. For more rapidly varying channels, the gain of
the (1,1) estimator is even larger, even with optimized parameters.
Lastly, we emphasize that the gain would have been even more
dramatic, had a “poor” value of T been chosen.

5. SUMMARY

We have given an expression for the cutoff rate Ro of the inter-
leaved Gauss-Markov fading channel when partial CSI is available
at the receiver via periodic training and MMSE channel estima-
tion. We have analyzed the optimal training energy κ∗

0 and train-
ing period T ∗ for three different MMSE estimators. Certain facts
apply to all estimators: κ∗

0 is always less than or equal to one-
half of the total energy available, with equality at low SNR. As
SNR increases, the required training energy diminishes. At high
SNR, and for a long training period T , κ∗

0 = κav

√
T , where κav

is the average energy per slot. For intermediate values of SNR,
the optimal training energy depends on the Doppler spread α in a
way that is unique to each estimator. In general, as α increases,
the required training energy diminishes. We have found a lower
bound on the optimal training period that is exact at high SNR
(i.e., when the channel prediction error dominates). We have also
shown an unexpected result, that the estimator which uses the infi-
nite past requires more frequent training than the one that just uses
the last pilot (although it achieves a larger cutoff rate). The non-
causal estimator that uses both the last and the next pilot requires
the least frequent training among the three estimators. Finally, we
have shown that optimizing the training parameters (energy allo-
cation, and training period) results in significant energy savings
(up to 4 dB) versus a sensible, but unoptimized approach. Exten-
sions of interest include the analysis of superimposed training, no
training, general binary modulation schemes, and matrix channels.
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Fig. 1. The cutoff rate for three different estimators for T = 10
for equi-energy transmission slots, and for α = 0.99.
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Fig. 2. The cutoff rate for three different PSAM estimators, opti-
mized over the training period T and energy κ0 for α = 0.99.
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