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ABSTRACT

We investigate the impact of medium access control (MAC) design
on the reconstruction performance of a one-dimensional random
signal field measured by a large scale sensor network. Assuming the
sensor density goes to infinity, we show that MAC design affects the
decay rate of reconstruction distortion, and thus the efficiency on re-
construction, as the number of received packets M increases. Using
a deterministic MAC with uniform spatial sampling, i.e., schedul-
ing sensor transmissions from uniformly spaced locations, results
in a faster decay rate of distortion than that using an ALOHA-like
random access MAC. In particular, the ratio of the excess recon-
struction distortion under random access MACs to that under the
MAC with uniform sampling grows as log M + O(log log M). We
further show that in the high measurement SNR regime, the benefit
from carefully scheduling transmission instead of random access is
substantial. In the low SNR regime, however, using random access
MACs results in little reconstruction performance loss.

1. INTRODUCTION

Sensor network with mobile access points (SENMA) [1], shown in
Fig. 1, is a network architecture for large scale low power sensor
networks. In SENMA, sensors perform simple functions such as
sensing / measurements. A small number of more powerful mobile
nodes are responsible for collecting data from sensors and perform-
ing sophisticated signal processing. In some applications, sensors
are densely deployed in the field to measure the signal of interest.
At a prearranged time, sensors take local measurements forming a
snapshot of the signal field. When the access point is ready to re-
trieve data, sensors transmit their packets back to the access point
through a common channel according to a specified medium access
control (MAC) protocol. Based on received data samples, the ac-
cess point estimates the original signal field.

Access point

Sensor

Fig. 1: a 1-D reachback sensor network with a mobile access point

The choice of MAC in SENMA can significantly affect the per-
formance of signal reconstruction. If we ignore the quantization and
measurement noise, receiving a packet from a sensor is equivalent to
having the access point sample the signal field directly. For densely

†This work was supported in part by the Multidisciplinary University
Research Initiative (MURI) under the Office of Naval Research Contract
N00014-00-1-0564, and Army Research Laboratory CTA on Communica-
tion and Networks under Grant DAAD19-01-2-0011.

deployed sensors, data from neighboring sensors are highly corre-
lated. Intuitively, collecting data from uniformly spaced sensors
is better than collecting data from a concentrated sub-area because
highly correlated measurements provide less information about the
source. It is the MAC protocol that determines the positions of sen-
sors from which data are successfully received.

If the mobile access point can schedule transmissions from sen-
sors, it is natural to consider a deterministic MAC where uniformly
spaced sensors are polled for their data. One such scheme is QUIRE
[2]. Such a scheme ensures that data are collected from the best
possible locations and no redundant transmissions are made. The
deterministic MAC, however, comes with nontrivial complications
of centralized scheduling. Furthermore, for finite sensor density,
there may be regions void of sensors, which may result in substan-
tial performance loss. (The problem of reconstruction with finite
sensor density is considered in [3].) Decentralized random access
such as ALOHA requires much less intervention from the mobile
access point [4]. For such MACs, sensors transmit their packets
probabilistically. The reception too is probabilistic, and packet col-
lection can be modeled as random sampling of the signal field.

Implementation details aside, there is a fundamental question
on how much gain (if any) the deterministic MAC has over random
access. Should one carefully schedule sensor transmission in order
to form the desired data sampling pattern, or simply allow random
access? How does the performance gain/loss vary as more and more
packets are collected?

In this paper, we consider signal field reconstruction using de-
terministic and random access MACs, with the maximum recon-
struction distortion as the performance metric. To make the prob-
lem more tractable, we study the performance in a one-dimensional
signal field, which provides insight into the two-dimensional prob-
lem. We use the optimal1 deterministic MAC that forms uniform
sampling. We show that, as the number of received packets M in-
creases, this MAC scheme results in a faster decay rate of maximum
reconstruction distortion than a random access MAC, so the deter-
ministic MAC is more efficient on reconstruction. Specifically, the
ratio of excess maximum distortion under random access to that
under the MAC with uniform sampling grows as O(log M). We
further show that in the high measurement SNR regime, the bene-
fit from carefully scheduling transmission instead of random access
is substantial. At low SNR, however, using random access MACs
results in little reconstruction performance loss.

The MAC design problem for sensor networks has attracted a
growing interest. Many MAC protocols have been proposed aim-
ing to the special needs for both ad hoc sensor networks [5] and
reachback sensor networks with access points [2, 4]. Among these
protocols, throughput and energy efficiency are the major consid-
erations. How these MAC schemes actually affect the reconstruc-
tion performance has not been addressed. Perhaps the most relevant

1The optimality of uniform sampling is established in [3].
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work is [6], where the problem of sequential estimation of a dy-
namic source using random sampling in time is considered.

2. PROBLEM STATEMENT

2.1. Source Model

Consider a one-dimensional field of length D denoted by A =
[0, D]. Let St(x) (x ∈ A) be the source of interest in A at time t.
We assume that the spatial dynamic of St(x) is a one-dimensional
homogeneous Gaussian random field governed by the following lin-
ear stochastic differential equation:

dSt(x) = −fSt(x)dx + σdWt(x) (1)

where f and σ ∈ R are known, and f > 02. Wt(x) is a standard
Brownian motion, and the source signal St(x) is the stationary solu-

tion of (1) with St(x) ∼ N (0, σ2

2f
), for x ∈ A. Furthermore, it can

be shown that St(x) is both Gaussian and Markovian. For St(x)
being homogeneous in A, it has correlation: E{St(x0)St(x1)} =

e−f(x1−x0)σ2/2f , for x0 < x1, which is only a function of dis-
tance between two points x1 and x0.

Suppose that a very large number of sensors are densely de-
ployed in A for measurements. We denote the sensor density in A
by ρ. We assume that the location of all sensors are known. During
operation, all sensors take local measurements at a preprogrammed
time t, and form a snapshot of the signal field. The measurement of
a sensor at location x and time t is given by

Yt(x) = St(x) + Nt(x) (2)

where Nt(x) is spatially independent and identically distributed
(iid) zero mean white Gaussian measurement noise with variance
σ2

N , independent of St(x). Note that we will reconstruct the source
signal {St(x) : x ∈ A} at time t based only on the sensor mea-
surements at time t. Therefore, we drop the time index for brevity
in the following presentation.

2.2. Two Types of MAC Schemes

When the mobile access point is ready for data collection, sen-
sors transmit packets, consisting of the measurement data and lo-
cation information, to the access point through a common wireless
channel. Sensors may contend for the channel or obey scheduling.
Hence, we consider two types of MAC schemes: random access and
deterministic.

For random access (such as ALOHA), sensors contend to ac-
cess the channel with equal priority, and their packets have equal
chance to get through. Under this type of MAC, the pattern of re-
ceived M packets origins, denoted as PM = {P1, · · · , PM}, is
random. This appears as if the access point randomly samples the
sensor measurement data inA. We denote this type of MAC scheme
as πr .

In contrast, a deterministic MAC scheme schedules transmis-
sions according to a fixed pattern. In other word, the access point
draws M packets (samples) from predetermined locations. A spe-
cial case is obtaining packets from uniformly spaced locations in A.
We refer to this as a MAC with uniform sampling, and denote it as
πu.

2f > 0, thus, (1) admits a stationary solution.

2.3. Packet Retrieval

Under the specified MAC scheme, after some collection time, the
access point receives a total of M packets originating from some
M points in A. In other words, the access point obtains M (noisy)
samples of S(x) in A. To avoid the boundary effect for signal re-
construction, we assume that, during the data collection, the access
point always obtains the packets from the two sensors closest to the
two boundaries of A. We denote the locations of these two “edge
sensors” by P0 and PD . Fig. 2 shows an example of a resulting
sampling of the signal field in A. Based on these data samples, we
then reconstruct the signal field.

S(x)

P0 P1 P2 · · · PM PD

Fig. 2: a 1-D signal field sampled by a sensor network

2.4. Source Estimation and Reconstruction Distortion

Given the M + 2 received packets (samples) from location pM =
[P0, P1, · · · , PM , PD], we denote the corresponding order statistics
of the packet generation locations {P1, · · · , PM} by P(1) < · · · <
P(M). We estimate S(x) at x by MMSE smoothing using its two
immediate neighbor samples: for P(i) < x < P(i+1),

Ŝ(x) = E[S(x)|{Y (P(i)), Y (P(i+1))}]. (3)

Notice that due to the Markov property of S(x), in the noiseless
measurement case, the above estimator is optimal in the sense that
it results in the minimum MSE. In other words, the optimal MMSE
estimator based on all received data samples reduces to (3). When
measurement noise is present, the above estimator becomes subop-
timal. Nonetheless, its simple structure and easy computation lends
itself as an attractive practical estimator.

Let the measurement SNR be SNR = σ2/2fσ2
N . We define

the maximum field reconstruction distortion given pM by the max-
imum mean square estimation error in A

E(pM , SNR)
∆
= max

x∈A
E{|Ŝ(x) − S(x)|2 | pM}. (4)

A MAC scheme π specifies how packets should be transmit-
ted. It, therefore, determines how the signal field {S(x) : x ∈ A}
is sampled. Consequently, π specifies the distribution of sample
points pM . Under a given MAC scheme π, the average maximum
distortion of the signal field is then given by

Ē(M, SNR; π)
∆
= E{E(pM , SNR); π}. (5)

where the expectation is taken over pM for a given M .
Our goal is to analyze the signal field reconstruction perfor-

mance under the two types of MACs. Specifically, we analyze how
Ē(M ; π) varies with M and π.

3. CALCULATING RECONSTRUCTION DISTORTION

In this paper, we consider the case when sensor density goes to
infinity, i.e., ρ = ∞. In this case, there exists a sensor at any
point in A. The two “edge” sensors are then at the two bound-
aries of A, i.e., P0 = 0 and PD = D. As we have mentioned
earlier, under random access MACs, the packet from each sensor
has equal probability to get through. Therefore, given M received
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packets3 at the access point, their original locations {P1, · · · , PM}
can be modeled as iid random variables with uniform distribution
U(0, D). In contrast, for deterministic MAC schemes, location
points {P1, · · · , PM} are fixed. For the MAC with uniform sam-
pling πu, we have PM = {0, D

M+1
, 2D

M+1
, · · · , D}.

3.1. The Average Maximum Distortion

By the Gaussian property of the process {S(x)}, the estimator in
(3) is then given by

Ŝ(x) = E{S(x)S(i)
p

H}(E{S(i)
p S(i)

p

H} + σ2
nI)−1S(i)

p (6)

where Y
(i)
p = [Y (P(i), Y (P(i+1)]

T , S(i)
p = [S(P(i)), S(P(i+1))]

T ,
and P(i) < x < P(i+1). Finding E(pM , SNR) in (4) can then be
broken down to finding the maximum distortion of S(x) in each
interval P(i) < x < P(i+1), for i = 0, · · · , M .

For P(i) < x < P(i+1), we can show that the maximum MSE
of Ŝ(x) is obtained at the middle point of P(i) and P(i+1), and it is
only a function of the distance between P(i) and P(i+1). Moreover,
it can be further shown that the maximum distortion E(pM , SNR)
in (4) is determined by the maximum of distances between any two
adjacent data samples

E(pM , SNR) =

1

SNR + 1 − e−fd
(M)
max

1

SNR + 1 + e−fd
(M)
max

σ2

2f

∆
= E(d(M)

max, SNR) (7)

where d
(M)
max = max0≤i≤M d

(M)
i . Then, the average maximum dis-

tortion in (5) is given by

Ē(M, SNR; π) = E{E(d(M)
max, SNR); π} (8)

where the expectation is now taken over d
(M)
max.

For deterministic MAC schemes, the reception pattern is fixed,
and therefore dmax is fixed. We have

Ē(M, SNR; πu) = E(
D

M + 1
, SNR) =

1

SNR + 1 − e−f D
M+1

1

SNR + 1 + e−f D
M+1

σ2

2f
.

(9)
In contrast, under random access MAC schemes, d

(M)
max is random.

To calculate the average distortion Ē(M, SNR; πr), we need to find
the probability distribution of the maximum sample distance d

(M)
max,

denoted by Fdmax(x|M). It is given by the following [7]

Fdmax(x|M)

=

⎧⎨
⎩

0 if 0 ≤ x < D
M+1

g(M, x) if D
M−k+1

≤ x < D
M−k

, k = 0, · · · , M − 2

1 − (M + 1)(1 − x
D

)M if D
2

≤ x ≤ D.

where

g(M, x) =
k∑

i=0

(−1)i

(
M + 1

i

) [
(M − i + 1)

x

D
− 1

]M

.

Using above and (8), Ē(M, SNR; πr) can be calculated by

Ē(M, SNR; πr) =

∫
E(x, SNR)dFdmax(x|M). (10)

3The actual number of received packets is M + 2. For convenience, we
only count those packets not from the two boundaries of A.

3.2. The Estimation Distortion Ratio

Notice that d
(M)
max ≥ D/(M + 1). It is clear that πu results in the

minimum Ē(M, SNR; πu) among deterministic MAC schemes. We
now compare the reconstruction performance under πu with that
under πr . Let Ē(∞, SNR; π) be the asymptotic distortion under a
specific SNR and π as the number of samples M → ∞. It can
be shown that Ē(∞, SNR; πr) and Ē(∞, SNR; πu) have the same
expression given by

Ē(∞, SNR; πr) = Ē(∞, SNR; πu) =
σ2

2f

1

1 + 2SNR
. (11)

Having the same expression for asymptotic distortion under πu and
πr is expected. As the number of samples goes to infinity, the
asymptotic distortion is determined only by the measurement ac-
curacy, i.e., the measurement SNR, not the specific MAC used.

Notice that as M increases, the number of samples increases,
and the maximum distortion under both types of MAC schemes de-
creases, but at different rates. Define the ratio of excessive maxi-
mum distortion under πr to that under πu as

r(M, SNR)
∆
=

Ē(M, SNR; πr) − Ē(∞, SNR; πr)

Ē(M, SNR; πu) − Ē(∞, SNR; πu)
. (12)

Because d
(M)
max is the smallest under πu, we have r(M, SNR) ≥ 1.

From (9) and (10), r(M, SNR) can be calculated for any given M .
To ease the computation, we can also use bounds on r(M, SNR),
based on the following inequality.

(E(D, SNR) − E(0, SNR))x/D ≤ E(x, SNR) − Ē(∞, SNR, πr)

≤ xσ2(1/SNR + 1)/(1/SNR + 2)2 (13)

The bounds on r(M, SNR) can then be calculated using (10), (12),
and (13). As a function of M , r(M, SNR) shows the difference of
the decreasing rate under πr and πu.

4. ASYMPTOTIC BEHAVIOR OF DISTORTION RATIO

We now analyze the asymptotic behavior of distortion ratio r(M)
as M increases. We have the following.

Theorem 1 For reconstructing the one-dimensional Gaussian ran-
dom signal field described in (1) in a sensor network, as M → ∞,
the ratio of the excessive maximum estimation distortion r(M, SNR)
defined in (12), is given by

r(M, SNR) = log M + O(log log M). (14)

Theorem 1 shows that the ratio of excessive maximum distor-
tion under πr to that under πu has a logarithmic growth rate. This
in turn tells us that the MAC design affects the decreasing rate of re-
construction distortion as the number of received packets increases,
and therefore the efficiency of the reconstruction. Using the MAC
with uniform sampling πu results in the fastest decreasing rate of
the distortion over M . This MAC efficiency can also be interpreted
in another way. The following corollary tells us how many packets
the access point needs under each type of MAC to reach the same
reconstruction distortion level.

Corollary 1 Let Mπu and Mπr be the number of packets needed
under πu and πr respectively, at the access point, to reconstruct the
signal field with the same level of distortion. Then

Mπu = O

(
Mπr

log Mπr

)
. (15)
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4.1. Reconstruction Performance in Different SNR Regimes

As we have mentioned, the MAC with uniform sampling πu is op-
timal in the sense that it results in the minimum signal reconstruc-
tion distortion. We now compare the actual distortion performance
Ē(∞, SNR; π) in different SNR regimes. Define

v(M, SNR) =
Ē(M, SNR; πr)

Ē(M, SNR; πu)
. (16)

v(M, SNR) (in dB) indicates the performance gap between πr and
πu.

As SNR → ∞, i.e., the noiseless measurement case, we have

Ē(∞, SNR; πr) = Ē(∞, SNR; πu) = 0.

In this case, from Theorem 1, as M → ∞, we have

v(M,∞) = r(M,∞) = log M. (17)

This indicates that the reconstruction performance gap between πr

and πu increases. Therefore, in the high SNR regime, as the num-
ber of received packets becomes large, the MAC with uniform sam-
pling πu provides a large performance gain over the random access
MAC. The benefit from carefully scheduling transmission instead
of random access is substantial.

In the low SNR regime, the value of Ē(∞, SNR; π) is large.
As M increases, Ē(M, SNR; π) decreases and is soon saturated
to Ē(∞, SNR; π), and therefore v(M, SNR) → 1. This demon-
strates that, when the measurement SNR is low, despite the lower
efficiency of the random access MAC, it results in very little re-
construction performance loss, compared with πu. In this regime,
the reconstruction performance is dominated by the measurement
noise, and is less affected by the choice of different MAC schemes.

4.2. Numerical Results

Fig. 3 plots the average maximum distortion and the distortion ra-
tio vs. M , respectively. We set f = 0.2, σ2 = 1, and D = 5.
Fig. 3 (top) shows the upper and lower bounds of distortion ratio
r(M, SNR) vs. M , under πr and πu respectively, in the noiseless
case. The bounds are calculated using (13). Besides the bounds, the
dotted line plots the scaled log M using the lower bound of (14). We
observe that, with M greater than 200, the growth rate of r(M,∞)
is already approximately log M , matching the asymptotic behavior
of r(M,∞) in Theorem 1.

Fig. 3 (bottom) shows the distortion curves Ē(M, SNR; π) vs.
M at SNR = 10 dB and 20 dB, respectively. We see that the dis-
tortion performance under πu is sensitive to the noise level. The
performance gap under the two different MAC schemes becomes
smaller as the measurement noise become higher.

5. CONCLUSIONS

In sensor networks, the choice of MAC can significantly affect the
performance of signal reconstruction. For reconstructing a one-
dimensional signal field, assuming the sensor density goes to in-
finity, we have shown that the MAC with uniform sampling πu

provides higher efficiency on reconstruction, i.e., it results in faster
decay rate of distortion as the number of received packets M in-
creases. In particular, the ratio of excessive distortion under random
access MAC πr to that under πu grows as O(log M). For high mea-
surement SNR, this translates to a substantial performance gain of
πu over πr . However, we have shown that, when the measurement

noise is high, the difference of the actual reconstruction distortion
between πu and πr becomes small. At low SNR, random access
results in little reconstruction performance loss. Notice that for fi-
nite sensor density, there may not exist sensors at desired locations,
therefore performance under πu may suffer from missing samples.
Using random access in this case may result in better performance.
How the reconstruction is affected in this case is discussed in [3].
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M (noiseless). Bottom: Distortion vs. M .
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