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ABSTRACT
Sensor networks have exciting potential applications in agri-
culture and medicine, where after the application of treat-
ment, it is beneficial not merely to track the response but
to assess the causal impact of the treatment reception. We
describe a distributed algorithm for the evaluation of the av-
erage causal effect of treatment reception upon response.
Our procedure applies the expectation-maximization algo-
rithm across a graphical model of the system, using local
message-passing techniques. The key collaborative step in
the algorithm is simple message aggregation and averaging,
which we perform over a tree network topology. Finally, for
completeness purposes, we describe a simple framework for
the construction and maintenance of the tree topology that
provides a robust mechanism for executing the algorithm
using spread-spectrum or ultra-wideband communication.

1. INTRODUCTION

Current applications of sensor networks in agricultural main-
tenance and medical monitoring [1, 2] suggest that there
is a tremendous potential for extensive and beneficial use
in these application domains. Existing proposals and im-
plementations focus on passive sensor networks that sim-
ply monitor an environment (or patient). However, after
the application of a treatment, it is beneficial not merely
to monitor the localized response of the environment but to
assess the causal effect of the treatment. Causal assessment
is an important step in the development of active sensor net-
works, in which sensor nodes do not just monitor, but make
local, autonomous decisions based on their combined mea-
surements and act to modify or influence the environment.

The paper focuses on the scenario where we wish to
evaluate the causal effect of treatment reception as opposed
to treatment assignment or application. This problem has
been explored in the context of treatment efficacy assess-
ment in clinical studies where there is the potential for im-
perfect compliance [3, 4]. In this paper, we consider sce-
narios in which both the reception of treatment and the re-
sponse can be expressed using binary variables. We also

assume that other local measurements are being conducted
by the sensor node.

The estimation of causal effect using Bayesian graphical
analysis techniques has been explored for many years [3–6],
and graphical techniques and EM algorithms have also been
applied recently in sensor networks [7,8]. The major contri-
bution of this paper is the application of distributed causal
analysis using a sensor network. We describe a distributed
algorithm designed to evaluate the average causal effect,
as defined by Holland [9], of treatment reception upon re-
sponse. Our procedure applies the expectation-maximization
algorithm across a graphical model of the system, using lo-
cal message-passing techniques. In the absence of strong
spatial dependencies between nodes, the key collaborative
step in the algorithm is simple message aggregation and
broadcasting. In addressing the implementation of the ag-
gregation, we outline a simple method for constructing and
maintaining a tree network topology. We describe the nature
of the localized message-passing between nodes in the tree,
discussing its implementation as a form of spread-spectrum
or ultra-wideband communication. The tree-based commu-
nication framework has the potential to support a range of
sensor network data fusion algorithms (including those pre-
sented in [8]).

Section 2 of the paper reviews the concept of causal
effect, describes a graphical model for the problem under
consideration and outlines the distributed procedure for es-
timating the average causal effect. Section 3 describes a dis-
tributed algorithm for the construction and maintenance of a
tree network topology. Section 4 briefly addresses physical
layer communication. Finally, Section 5 makes concluding
remarks and indicates future research directions.

2. ESTIMATING AVERAGE CAUSAL EFFECT

We address a scenario in which sensor nodes have been dis-
tributed in an environment, and a treatment has potentially
been assigned at (or in the vicinity of) each sensor node lo-
cation. A sensor node has knowledge of whether the treat-
ment was assigned and can also determine if the treatment



was received. Finally, the sensor is able to determine if the
response is positive.

Following the notation adopted in [4], we represent the
assignation of the treatment using the binary variable Z, the
reception of treatment by the binary variable D, and the
success of the treatment by the binary variable Y . We let
z ∈ {z0, z1} represent the value of Z, where z1 indicates
that treatment was assigned, and z0 that it was not. Similarly
d ∈ {d0, d1} and y ∈ {y0, y1} represent, respectively, the
values assumed by D and Y , with d1 indicating that treat-
ment was received, and y1 indicating a positive observed re-
sponse. The values z0, d0 and y0 are the negations of their
respective counterparts.

We denote by U all characteristics, both observed and
unobserved, that influence the values of D and Y . In gen-
eral, U will comprise several random variables, both dis-
crete and continuous. Beyond the binary values, each sen-
sor also records a set of measurements W , the nature of
which we leave unspecified, save that we assume there is an
identifiable dependency between U and W .
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Fig. 1. Graphical model for the variables affecting measure-
ment at an individual sensor node.

The graphical model depicted in Figure 1 represents in-
dependence assumptions about the joint probability distri-
bution p(z, d, y, w, u). It specifies that the treatment assign-
ment Z does not directly affect the response Y , but only
through the reception of treatment D. The model also as-
serts that the assignment of treatment does not depend on
the latent factors that determine treatment reception and re-
sponse. A third assertion is the conditional independence
between W and Y given the latent variables U .

The graphical model also depicts some causal assump-
tions. The absence of a direct link from Z to Y implies
that p(y|d, u) is the same if d is measured or if its value is
enforced exogenously. This permits the prediction of the
response to an imposed reception of treatment. In this pa-
per, we are concerned with the average effect on Y due to
treatment, as measured by the average causal effect, defined
as [9]:

ACE(D → Y ) = Eu[p(y1|d1, u) − p(y1|d0, u)]. (1)

The average causal effect is thus the expected difference be-
tween the probability of the response being positive when
treatment is received and when it is not received. Denoting
our data across all sensors by D, our goal in this paper is
to estimate ACE(D → Y ) by maximizing the likelihood
function L(D|ACE(D → Y )).
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Fig. 2. Graphical model depicting the relationship between
the global probability distribution g(u), the local back-
ground states ui and vi, and the hidden response states si

for all sensor nodes.

In the clinical trial research of [3,4], the additional mea-
surements W were not present. The authors were able to
exploit the observation of [6] that the latent factors U can
be replaced by a single, finite state variable such that the
resultant model is equivalent with respect to all measure-
ments and manipulations of Z, D and Y . In our case, this
replacement disrupts the dependency of W on the latent fac-
tors U . In this paper, we decompose the latent factors of
the i-th sensor node into two components, Ui and Vi. Now
Vi comprises all the local latent factors, and the Ui, which
are assumed independent of one another, are realizations of
finite state variables according to a global probability dis-
tribution, g(u). This distribution captures the components
of the relationships between treatment assignation, recep-
tion and response that are common to all nodes. Together,
Ui and Vi determine a single, finite state variable Si that
governs the functional mappings between Z, D and Y , (as
described in [4]). Figure 2 depicts the resultant graphical
model across the entire system.

The state variable Si can be considered to consist of six-
teen equivalence classes, each of which describes two func-
tional mappings; one from Zi to Di, and one from Di to Yi.
It is convenient to regard each equivalence class as a point in
the joint space of two four-valued variables C and R. The
variable C determines the mapping from Z to D, and the
variable R determines the mapping from D to Y . Using the
same mappings as in [4], and denoting the states of S using
the notation cr(i,j) with 0 ≤ i, j ≤ 3, we can express the
average causal effect as:

ACE(D → Y ) =
∑

i

[p(cr(i,1)) − p(cr(i,2))]. (2)



This is equivalent to the difference, for recipients of the
treatment, between the probability of a positive effect and
that of a negative effect.

We estimate average causal effect through application of
the expectation-maximization (EM) algorithm [10] across
the graphical model depicted in Figure 2. This algorithm
generates an estimate ÂCE(D → Y ) that (locally) max-
imizes the likelihood function L(D|ACE(D → Y )). The
expectation step of the algorithm uses conventional message-
passing techniques associated with Bayesian networks to
determine the expected values of the state variables si, ui,
and vi [10]. Note that each message in the expectation step
is local to one of the nodes (no inter-node communication is
necessary).

The maximization step involves the determination of the
global distribution g(u) which maximizes the likelihood of
observing the ui across the m sensor nodes. We model g(u)
as a multinomial distribution, so this maximization takes
the form of an averaging of the expected ui values. In or-
der to accomplish this, the expected ui must be aggregated
across the network (and divided by the number of nodes).
Finally, upon convergence of the EM algorithm, the aver-
age causal effect must be estimated by averaging, across
all sensor nodes, the evaluations of (2). The collaborative
steps in the algorithm, appearing in the maximization step
and the generation of the final result, consist solely of ag-
gregations across the network, followed by dissemination
(broadcasting) of the result. In the next section, we describe
a tree-based communication framework that accomplishes
the aggregation and broadcasting task.

3. TREE-BASED IMPLEMENTATION

A communication infrastructure based on a tree topology
provides an efficient mechanism for executing the tasks of
aggregation and network-wide dissemination. The efficiency
is achieved because the tree topology enables hierarchical
aggregation of messages, obviating the need to transport all
node messages to a central location.

We assume that it is possible to establish connectivity
across the network (otherwise aggregation would not be pos-
sible). A single node is identified as the root node (the iden-
tity of the root can change slowly over time). Data aggrega-
tion commences at the leaf nodes. Each leaf node sends its
message (the expectation of the state variable ui) to its par-
ent node. When a parent node has received messages from
all its children, it aggregates the received messages and its
own message, and relays the result to its parent. The process
continues until the root node is reached. The root node per-
forms the maximization (or the estimation in the final step)
and begins the dissemination process. In this phase, each
parent node broadcasts the message from the root to all of
its children nodes. During each iteration of the algorithm

each active node in the network performs at most two com-
munication steps, sending a single message to its parent and
broadcasting a single message to its children. In the rest of
this section, we outline a simple algorithm for establishing
the required tree network topology. For a more sophisti-
cated (and complex) distributed tree-building algorithm the
interested reader may wish to consult [11].

We assume that each node is assigned a unique ID that
is determined prior to deployment. Initially, the network
consists of a multitude of small trees. The proposed algo-
rithm aims to merge all these trees into a single one that
spans the whole network and has as a root the highest ID
node. To make this possible, the nodes have to store local
tree state information which is exchanged with their neigh-
boring nodes. More specifically, each node stores the ID of
his parent node, a list containing the IDs of its child nodes,
and, finally, the ID of the root of the tree to which it be-
longs. We note that the latter ID uniquely identifies a tree
in the network. The local topology information is transmit-
ted using special “topology” packets which can be of the
following four types:

• Beacon. Used by an isolated node to broadcast its
own ID and attract other nodes to form a tree.

• Root update. Used by a parent node to notify its chil-
dren of a change of the root node of the tree to which
they belong.

• Connect. Used by a child node to notify its parent to
add it to its child node list.

• Disconnect. Used by a child to instruct its parent to
remove it from its child node list.

In addition, each node periodically transmits the root ID of
its tree. To reduce the packet traffic in the network the root
ID can be piggybacked on some of transmitted data packets.
In the description of the tree formation and maintenance al-
gorithm that follows, Tn denotes the tree to which node n
belongs, and Sn denotes the subtree with node n as its top-
level node.

Immediately after its activation, sensor node n starts
scanning for trees in the surrounding area by listening to
Beacon topology packets or data packets that contain root
IDs. After a random amount of time, the node broadcasts a
Beacon topology packet and repeats the process. The scan-
ning process will be interrupted by either of the following
two events: (i) the detection of a packet originated from
node m belonging to tree Tm with a higher root ID; or (ii)
the detection of a Connect packet sent by another node. In
the case of event (i), node n will transmit a Connect topol-
ogy packet to node m and will attach to Tm with node n as
its parent. Event (ii) will cause the creation of a new tree
with node n as the root.



Once node n is part of a tree it will participate in the
regular data packet transmission and aggregation process.
However, periodically, it will scan the vicinity for trees by
listening to Beacon topology packets or data packets that
contain root IDs. Packets that contain root IDs smaller than
the root ID of Tn are ignored. If, however, a higher root
ID packet is received from node m of tree Tm, then, the
sub-tree Sn will attach itself to tree Tm through nodes n
and m. This attachment takes place in three steps. First,
node n severs its connection with its parent by issuing a
Disconnect packet. Then, it transmits a Connect packet to
node m in order to connect to tree Tm. Finally, node n
notifies its subtree of the new tree to which they now belong
by transmitting a Root update packet to all of its children.

If a sensor node n does not receive any packets from its
parent node after a fixed, predetermined, period of time then
it assumes that the parent node has failed, and that the sub-
tree Sn has been disconnected from the network tree. The
rest of the nodes are notified of this through Root Update
packets that set the root ID to the ID of node n. As de-
scribed previously, the new tree will eventually merge with
one of the neighboring trees and the network tree topology
will be reestablished.

4. PHYSICAL LAYER CONSIDERATIONS

The physical layer of a wireless sensor network must sup-
port node-to-node data and topology packet transmission.
Node and battery size limitations as well as the usually hos-
tile nature of the operational environment call for physi-
cal layer designs that are: (i) power efficient; (ii) robust to
multipath propagation; (iii) difficult to intercept and eaves-
drop upon; and (iv) resistant to unintentional interference as
well as jamming. Spread-spectrum (SS) and ultra-wideband
(UWB) [12] communications schemes exhibit all four prop-
erties and appear to be promising technologies for the phys-
ical layer of wireless sensor networks.

In our network, all nodes share a common communi-
cation channel defined as a common spreading signature
(in the case of an SS-based system) or a common time-
hopping code (in the case of UWB communications). Child-
to-parent message passing is performed using a conventional
multiple-access collision-avoidance (MACA) handshaking
protocol [13] that involves the exchange of request-to-send
(RTS) and clear-to-send (CTS) control packets between the
transmitting and receiving node. Parent-to-children com-
munication, however, is handled in a slightly different way.
To take advantage of the broadcasting nature of parent-to-
children communication we a variant of MACA: the parent
notifies all of its children of the forthcoming broadcasting
by transmitting a single request-to-broadcast (RTB) control
packet to which the children respond with the transmission
of a CTS packet. When the parent receives CTS packets

from all of its children it broadcasts the data or topology
packet.

5. CONCLUSIONS

In agricultural and medical applications, the role of sensor
networks can develop beyond monitoring to active control
or localized treatment. This involves decision-making, an
arena in which causal analysis plays a vital role. We have
presented a distributed algorithm for a specific example of
causal analysis using a sensor network, but there remains
much to explore and develop.
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