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ABSTRACT
Using statistical room acoustics we investigate the per-
formance of Blind Source Separation and Deconvolution
(BSSD) algorithms when used in a reverberant room. We
focus on the case where one of the sources moves, and ex-
amine the relative impact of source movement and room re-
verberation on the expected performance. We derive theo-
retical expressions, and verify these through image model
simulations.

1. INTRODUCTION

Blind Source Separation and Deconvolution (BSSD) is a
technique that has gained extensive attention recently, since
it presents us with a potentially powerful set of tools to sep-
arate and deconvolve speech signals when only mixed ob-
servations are available.

Unfortunately, performance in real acoustic environ-
ments is limited by the unpredictability of room reverber-
ation. In particular, if the sources move, the performance
of the system may degrade significantly. This problem
has been investigated to some extent using BSSD experi-
ments of speech phoneme recognition in [2], where it was
found that source movement degraded the recognizer per-
formance. It has been noted that if the BSSD system is
constrained to only separate the direct-path components of
the mixture, fast algorithm convergence is obtained [4], but
performance suffers as the enclosure becomes more rever-
berant.

The performance of BSSD algorithms has typically
been measured using Signal-to-Noise Ratios (SNR) at the
input and output of the system. This requires knowledge of
the source signals and mixtures (i.e. the characteristics of
the enclosure). These measures are dependent on the partic-
ular test environment used for each BSSD algorithm, mak-
ing generalized conclusions difficult to formulate.

Our aim in this paper is to investigate in more detail the
effect of source movement and reverberation on BSSD algo-
rithms, by leveraging results from statistical room acoustics
(SRA). SRA assumes that the energy density of the sound
waves inside an enclosure can be considered as the sum of
contributions from an infinite number of plane waves that
arrive from random directions of propagation and contribute
equally to the space-averaged energy density. In [3] we used

SRA to examine the performance of multi-channel acoustic
equalization systems. Here, we extend our results to the spe-
cific case of BSSD with two sources and two microphones.

2. PROBLEM SPECIFICATION

2.1. Signal Model

Consider the case of two source signals impinging on
two microphones. Let the position of the first and
second sources, respectively, be s1 and s2. Similarly,
let the position of the first and second microphone be
m1 = [X1, Y1, Z1]T and m2 = [X2, Y2, Z2]T , respec-
tively. Since SRA is naturally formulated in the frequency
domain, we will consider a frequency-domain formulation
of the source separation problem.

Define A(s,m) as the acoustic transfer function (ATF)
from a source located at s to a microphone located at m.
This ATF can be written as the sum of direct-path Ad(s,m)
and reverberant-path Ar(s,m) terms as

A(s,m) = Ad(s,m) + Ar(s,m), (1)

where the direct-path term is

Ad(s,m) ! ejk‖s−m‖

4π‖s− m‖ , (2)

where k = 2πf/c is the wavenumber with c the speed of
sound propagation in air, f the frequency and ‖ · ‖ is the
vector 2-norm.

Let x1 and x2 denote the signals at the first and second
microphones, respectively. These are given by

x = Au, (3)

where x = [x1, x2]T is the vector of microphone signals,
u = [u1, u2]T is the vector of source signals, and A is the
2 × 2 matrix of ATFs, with the (n, k)th element given by
[A]n,k = A(sk,mn). Note that all signals and transfer
functions are functions of frequency, although to simplify
notation we suppress the explicit dependence on frequency.

These microphone signals are then filtered by the 2 × 2
unmixing matrix H to give the output signals:

y = Hx, (4)
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Fig. 1. Block diagram of the standard BSS system.

where y = [y1, y2]T is the vector of output signals. Let
Hn(mk) denote the unmixing filter from the microphone at
mk to the nth output. Hence, the (n, k)th element of the
unmixing matrix is [H]n,k = Hn(mk). A block diagram of
the standard BSS system is shown in Fig. 1.

The aim of any BSS algorithm is to design the unmix-
ing matrix H such that y1 and y2 are “separated”. Typi-
cal criteria to achieve this are minimization of mutual in-
formation, entropy maximization, maximum likelihood and
central limit theorem. A general overview of recent BSSD
methods can be found in [5].

2.2. Performance Measure

Let g1(s) denote the overall system transfer function from
the source located at s to the first output, and similarly for
g2(s) and the second output. The matrix of system transfer
functions is:

G = HA, (5)

where the (n, k)th element is [G]n,k = gn(sk).
Our aim in this paper is to study the influence of rever-

beration on the performance of BSS algorithms. In partic-
ular we wish to develop expressions for the system transfer
functions that one could expect to obtain in a reverberant
room, when the unmixing matrix is designed to satisfy cer-
tain criteria. Towards this end, and without loss of general-
ity, we will examine the system transfer functions from each
source to the first output y1. Because of the symmetry of the
system, analogous results will hold for the second output,
y2, which we therefore do not show here. We assume that
the permutation problem inherent to frequency-domainBSS
algorithms has been solved, and that the first output signal
corresponds to the first source signal, and similarly for the
second output and the second source signal.

Let g(sn) ≡ g1(sn) describe the system TFs from the
sources to the first output, and let Hk ≡ H1(mk). Also, let
g ! [g(s1), g(s2)]T , and h ! [H1, H2]T , so (5) becomes
gT = hTA. In separating the two signals, the BSSD
algorithm must “undo” the effect of the ATF to some ex-
tent. Suppose that the BSSD algorithm operates such that
only the direct-path components of A are unmixed. 1 De-

1BSSD algorithms that operate essentially as null beamformers (e.g.
[4]) will have this property.

note the resulting demixing vector as hd, which satisfies
ĝ = AT

d hd where Ad is a matrix containing only the
direct-path components of A (the (n, k)th element is given
by [Ad]n,k = Ad(sk,mn)), and ĝ are the desired unmixed
system TFs (note that ĝ = [1, 0]T would imply perfect sep-
aration of the direct paths). Because only the direct paths
are separated, the overall system TFs g will not match ĝ
precisely.

Suppose now the first source moves to a new location ŝ1

with ‖s1 − ŝ1‖ = ∆, before the unmixing filters are able
to re-converge. The signals will now be mixed according
to a different matrix A∆ with the new subscript denoting
that the mixing process is now a function of the source dis-
placement ∆. The actual system transfer function will then
be g = AT

∆hd. Again, the overall system TFs will differ
from the desired TFs.

The questions we wish to address are: (i) What is the
effect on the first source signal at the first output; and (ii)
How much of the second source signal remains at the first
output. The first question can be answered by considering
the deviation term: E{|g(ŝ1)− ĝ(s1)|2}. Similarly, the sec-
ond question can be answered by considering the residual
term: E{|g(ŝ2)− ĝ(s2)|2}. These are the performance mea-
sures that we will use to analyze the expected performance
of BSS algorithms, and in the sequel we derive closed-form
expressions for these terms under various conditions.

3. RESULTS

3.1. Separation of Direct Paths

Theorem 1 If the unmixing matrix is designed to separate
the direct-path components of the mixed signals, the devia-
tion of the first source signal at the first output is

E{|g(s1) − ĝ(s1)|2} = εR, (6)

and the residual of the second source at the first output is

E{|g(s2) − ĝ(s2)|2} = εR, (7)

where

εR =
(

1 − α

πSα

) (
|H1|2 + |H2|2

+2%{H1H
∗
2}

sin(k‖m1 − m2‖)
k‖m1 − m2‖

) (8)

where %{.} is the real component of the argument, S is the
total surface area of the walls and α is the average absorp-
tion coefficient of the walls.

This theorem can be proved using results from [3]. Note that
it also describes the deviation and residual with the sources
in their nominal positions.
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Fig. 2. Comparison of experimental and theoretical curves
of (6).

3.2. Separation of Direct Paths, Moving Sources

Theorem 2 Assume the unmixing matrix is designed to sep-
arate the direct-path components of the mixed signals with
the source signals in default positions s1 and s2. If the first
source moves to a position ŝ1 that is a distance ∆ from s1

in an arbitrary direction, the deviation of the first source at
the first output is

E{|g(ŝ1) − ĝ(s1)|2} = ε∆(s1) + εR, (9)

where εR is given by (8), and ε∆(s1) ≡ ε∆(s = s1) with

ε∆(s) = |H1|2
(
|Ad(s,m1)|2 − 2 |Ad(s,m1)|2

sin(k∆)
k∆

+
1

2(4π)2∆‖s− m1‖
ln

∣∣∣∣
‖s− m1‖ + ∆
‖s− m1‖ − ∆

∣∣∣∣

)

+ |H2|2
(
|Ad(s,m2)|2 − 2 |Ad(s,m2)|2

sin(k∆)
k∆

+
1

2(4π)2∆‖s− m2‖
ln

∣∣∣∣
‖s− m2‖ + ∆
‖s− m2‖ − ∆

∣∣∣∣

)

+ 2%
{

H1H
∗
2Ad(s,m1)A∗

d(s,m2)
(

1 − 2
sin(k∆)

k∆

+ejk∆2µs
sin(kζs∆)

kζs∆

)}

(10)

where

ζs =
1

‖s− m2‖‖s− m1‖
×

[
(‖s− m2‖X1 − ‖s− m1‖X2)2

+ (‖s− m2‖Y1 − ‖s− m1‖Y2)2

+(‖s− m2‖Z1 − ‖s− m1‖Z2)2
]1/2

,

(11)

µs =
1
2

(
1

‖s− m1‖
− 1

‖s− m2‖

)
. (12)

Similarly, if the second source moves to a position ŝ2 that is
a distance ∆′ from s2 in an arbitrary direction, the residual
of the second source at the first output is

E{|g(ŝ2) − ĝ(s2)|2} = ε∆′(s2) + εR, (13)

where εR is given by (8), and ε∆′(s2) is given by (10) with
s = s2 and ∆ = ∆′.

This theorem can again be proved using results from [3].
Note that ε∆(s) → 0 as ∆ → 0. Observe that both (6) and
(9) are factored into two separate components: one that de-
scribes the effect of movement, and the other that describes
the effects of reverberation. It is thus of interest to investi-
gate their relative impact on BSSD performance.

3.3. Simulations and Discussion

To verify these theoretical expressions we check them
against simulations using the Image Model [1]. We con-
sider a room of dimensions [6.4, 5, 4] metres, with a re-
verberation time T60 of 0.45s. The relative geometry of
the system has the sources 0.5m apart, parallel to the re-
ceivers line-array which are 0.1m apart. The mid-point of
the array is 1m from the corresponding mid-point between
the sources. We determine the frequency responses between
the sources and each one of the receivers, and average the
results over 100 Monte-Carlo simulations where the whole
setup is randomly rotated and translated within the room.
The values of the elements of hd were calculated such that
[1, 0]T = AT

d hd is satisfied, i.e. direct paths are perfectly
demixed. The resulting simulated plots show good agree-
ment with the respective theoretical expressions. This can
be seen in Fig. 2 and Fig. 3 for Eq. (6) and Eq. (9) respec-
tively.

The error level predicted by (9) is a function of two
terms: ε∆(s) and εR. We want to examine their relative
effect, i.e. the error level due to displacement and due to
reverberation. Fig. 4 shows εR for different reverberation
times. Fig. 5 shows the added error due to displacement
ε∆(s). Comparison of the two figures shows that reverber-
ation is a significant contributor to the error level, even for
low values of T60. It appears that for direct-path unmixing,
movement only becomes significant when larger than 5cm.
It can also been seen that the reverberant error is dominant
at low frequencies while the one due to displacement domi-
nates at higher frequencies.

The described analysis only refers to direct-path unmix-
ing. It is of interest to examine the two error terms when
exact (direct and reverberant paths) unmixing is performed.
This was done through simulations. The results shown in
Fig. 6 compare directly the exact-path system with the re-
spective unmixing of direct-path. It appears that for the cho-
sen geometry, exact-path equalization is more robust only
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Fig. 3. Comparison of experimental & theoretical curves of
(9). The first source is displaced by ∆ = 5cm.
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Fig. 4. Variation of εR in (8) for changing T60.

for displacements smaller than a few cm. In a sense, this
suggests that the choice of the unmixing scheme depends
on the application and the environment variations expected.
Nevertheless BSSD algorithms that are constrained to un-
mix only direct-path components seem to have more pre-
dictable behaviour in reverberant rooms. Their computa-
tional complexity is significantly smaller as well.

4. CONCLUSIONS

We have investigated the effect of source movement and re-
verberation on BSSD algorithms. We found that when the
movement is larger than a few centimeters the robustness
of the algorithms attempting to unmix only the direct-path
components of the ATF match and even outperform BSSD
algorithms that attempt to unmix the entire reverberant ATF.
This suggests that BSSD algorithms that are constrained to
unmix only direct-path components will be more robust to
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Fig. 5. Variation of ε∆(s1) in (10) for different displace-
ments ∆.
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Fig. 6. Comparison of exact and direct-path unmixing for
different displacements ∆.

source movement in a real application.
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