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ABSTRACT
In this paper, we investigate the importance of taking fre-
quency-dependent temporal phenomena into account in au-
dio coding. We do this in the context of sinusoidal modeling
of audio signals by applying amplitude modulation to the
sinusoidal components. Traditionally, audio coders use a
fixed time-segmentation for all frequencies despite that it is
well-known that the time-frequency resolution of the human
auditory system is not constant. The well-known window
switching is an example of this. We compare multiband am-
plitude modulated sinusoidal models to a singleband model
using different audio excerpts. Based on both comparative
listening tests and a psychoacoustical distortion measure it
is concluded that an improvement is generally gained using
multiband amplitude modulation, although specific single
sources are well-modeled using a singleband model.

1. INTRODUCTION

A well-known problem in perceptual audio coding and mod-
eling is what is known as pre-echo distortion or pre-echos
(see e.g. [1]). Pre-echos can be defined as the introduction
of a modeling error or quantization error that occurs before a
transient signal. These occur in block-based modeling when
there is an onset or attack at the end of a segment.

The importance of pre-echo control in audio coding and
modeling can be understood by considering the temporal
masking properties of the human auditory system. In audio
coding the original signal serves as a masker of the error-
signal. This masking is very effective when the error-signal
is simultaneous with, or directly follows the masker. How-
ever, when the error-signal preceeds the masker, very little
masking is observed. This is depicted in Figure 1 show-
ing masking thresholds as a function of time. Pre-masking
can be measured to typically last only about 20 ms, whereas
post-masking can last longer than 100 ms [2]. Trained lis-
teners, however, may exhibit little or no pre-masking except
for very short signals [3]. This means that any artifacts in-
troduced before an onset are very poorly masked compared
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Fig. 1. Temporal or nonsimultaneous masking properties.
Pre-masking occurs before the onset of the masker and post-
masking occurs afterwards (after [2]).

to the situation where a signal is present. The point that
motivates this work is that masking phenomena occur on a
critical band basis. Singleband techniques such as window
switching [4] or AM as used in [5] do not take this into
account. What may happen is that the choice of window
length or the estimation of the amplitude modulating signal
may be dominated by a stationary low-frequency compo-
nent while a transient occurs at high frequencies, whereby
audible artifacts are caused. Or it may happen that a short
window is chosen because of some high-frequency transient
while stationary low-frequency parts may suffer because of
the decreased frequency resolution.

In sinusoidal coding of speech [6] and audio, fixed seg-
mentation for all frequencies has also been the standard so-
lution, although multiresolution sinusoidal modeling was
considered in [7]. Rate-distortion optimal time-segmenta-
tion [8] leads to an improved sinusoidal modeling, but still
provides only a partial solution because a) the segmentation
is still fixed over frequency and b) the minimum segment
size is constrained because of the computational complex-
ity involved in finding the optimum segmentation. Also,
the use of overlap between segments inevitably smears any
modeling error into neighboring frames.

In [9] amplitude modulated sinusoidal models for au-
dio modeling and coding were introduced and in this pa-
per we build further on this work. We achieve frequency-
dependent temporal modeling using multiband amplitude



modulation, where different amplitude modulating signals
are used at different frequencies. Amplitude modulated si-
nusoidal models for audio modeling and coding are attrac-
tive for modeling of transient phenomena because constant-
amplitude sinusoidal models converge slowly in terms of
rate-distortion for transient signals thus performing badly
for low bit-rates.

The paper is organized as follows. In Section 2 the am-
plitude modulated sinusoidal analysis-synthesis system is
presented. This includes two parts, namely estimation of
amplitude modulating signals and estimation of the param-
eters of the sinusoidal carriers. In Section 3 the multiband
model is compared to the singleband model by listening
tests as well as a perceptual distortion measure. Finally,
conclusions about the work are presented in Section 4.

2. AM SINUSOIDAL ANALYSIS-SYNTHESIS

We use an amplitude modulated sinusoidal model, that looks
as follows:

x̂(n) =

Q
∑

q=1

γq(n)

Lq
∑

l=1

Al,q cos(ωl,qn + φl,q), (1)

where γq(n) is the amplitude modulating signal in the q’th
subband and Lq is the number of sinusoids in that sub-
band. ωl,q , Al,q and φl,q are the frequencies, amplitudes
and phases of the sinusoids. We distinguish between a sin-
gleband model (Q = 1) and a multiband model (Q > 1).

The task is now to find γq(n) for each subband. We start
the estimation, which is based on [9], by splitting the input
signal into subbands using the perfect reconstruction non-
uniform filterbank described in [10]. Then we have for each
subband a signal xq(n) and a model of that signal x̂q(n).
The instantaneous envelope of the model can then easily be
shown to be

|x̂q,c(n)|2 =

Lq
∑

l=1

Lq
∑

k=1

γ2
q (n)Aq,lAq,k (2)

× exp(j(φq,k − φq,l)) exp(j(ωq,k − ωq,l)n),

with subscript c denoting the analytic signal (see e.g. [9]).
The squared instantaneous envelope is thus composed of a
set of auto-terms (l = k) that identifies the amplitude mod-
ulating signal and a set of interfering cross-terms (l 6= k).
From this it can be seen that the frequencies of these cross-
terms in the instantaneous envelope is given by the distances
between the sinusoidal components. Thus, the lowest fre-
quency in the squared instantaneous envelope caused by the
interaction of the sinusoids is given by the minimum dis-
tance between two adjacent sinusoids.

These cross-terms can be reduced by constraining the
minimum distance between sinusoids and then lowpass fil-
ter the squared instantaneous envelope of the input signal as
shown in [9], i.e.

γ2
q (n) = αe2

q(n) ∗ hLP (n), (3)

where e2
q(n) = x2

q(n)+H{xq(n)}2 with H{·} denoting the
Hilbert transform. Moreover, α is a positive scaling factor
and hLP (n) is the impulse response of an appropriate low-
pass filter with a stopband frequency below half the mini-
mum distance between two sinusoids, i.e.

2BW < min
l 6=k

|ωq,l − ωq,k|. (4)

For quasi-harmonic (pitched) sounds such as voiced speech,
this spacing is simply the fundamental frequency. For a dis-
cussion on design issues regarding this filter see e.g. [9, 5].

Given that the amplitude modulating signal has been
estimated for the q’th subband, we can then find the sinu-
soidal carriers of the subband (note that for convenience we
now change the notation from indexing by subband to in-
dexing by iteration). These are found by applying the es-
timated amplitude modulating signals to an overcomplete
dictionary containing complex sinusoids resulting in a sub-
band dictionary Dq containing atoms gk,q(n). We then per-
form matching pursuit [11], where in each iteration the max-
imizer of the normalized inner product between the atom
and the residual is chosen, i.e.

gi,q = arg max
gk,q∈Dq

| < gk,q, ri,q > |2

‖gk,q‖2
2

, (5)

where gk,q = [gk,q(0) . . . gk,q(N−1)]T and ri,q = [ri,q(0)
. . . ri,q(N − 1)]T with ri,q(n) being the residual of the i’th
iteration. Now, writing out the inner product using the AM
model, we get

< gk,q, ri,q >=

N−1
∑

n=0

γq(n) exp(−jωkn)ri,q(n). (6)

It can be seen, that by defining r̃i,q(n) = γq(n)ri,q(n),
the greedy estimation can be carried out efficiently using an
FFT of r̃i,q(n). In a similar way, we can apply the window
w(n) twice to the input and find the solution using an FFT,
whereby the error is minimized in a weighted least-squares
sense, i.e.

min

N−1
∑

n=0

w2(n)r2
i+1(n)

=min

N−1
∑

n=0

(w(n)ckgk,q(n) − w(n)ri,q(n))2, (7)



where ck is the coefficient (phase and amplitude in this case)
of the k’th atom. This causes not only the input but also the
model to be weighted. This takes the use of windowing in
both analysis and synthesis into account.

Equation (5) minimizes only the subband residual. When
minimizing over the entire signal, we simply pick the maxi-
mum of the spectral subband maxima. This leads to the iter-
ative (i being the iteration index) FFT-based algorithm (the
FFT is denoted FFT {·}) described below, where the fre-
quencies, phases and amplitudes of the sinusoidal model are
found. We initialize the residuals with r1,q(n) = xq(n) ∀q.

1. Find subband

qi = arg max
q

(

|FFT {γq(n)w2(n)ri,q(n)}|2
∑N−1

n=0
γ2

qi
(n)w2(n)

)

and corresponding frequency

ωi = arg max
ω

|FFT {γqi
(n)w2(n)ri,qi

(n)}|2.

2. Estimate phase and amplitude by the inner product:

ci =

∑N−1

n=0
rqi,i(n)w2(n)γqi

(n) exp(−jωin)
∑N−1

n=0
γ2

qi
(n)w2(n)

,

which can be found from the subband FFT.

3. Generate new subband residual:

ri+1,qi
(n) = ri,qi

(n) − 2γqi
(n)|ci| cos(ωin + 6 ci).

This procedure is continued until some stopping crite-
rion is reached. Although the estimation procedure is de-
pendent on the amplitude modulating signal γq(n), the al-
gorithm still converges if we restrict γq(n) to be strictly pos-
itive. Hereby the subband dictionaries Dq still form over-
complete bases and the algorithm converges on a subband
level [11] and because of the perfect reconstruction filter-
bank, the entire system converges.

The above algorithm can be implemented much more
efficiently than in the form above. The FFTs of the indi-
vidual subbands and their maxima can be computed once at
initialization. Then, in each iteration we only need to update
the FFT of the subband residual and find the spectral max-
imum of it. The search in step 1 then reduces to searching
among the Q spectral maxima.

3. EXPERIMENTAL RESULTS

The importance of multiband temporal modeling has been
investigated using both listening tests in the form of AB
preference tests as well as an objective distortion measure.
We compare the singleband model (Q = 1) to the multiband
model (Q > 1).

Settings

Value
Parameter ABBA GLCK SPCH

Sampl. freq. [kHz] 44.1 44.1 8
Filterbank order 200 200 200

Filters 25 12 5
LP Filter order 100 100 100

Sinusoids 40 40 40
Cutoff freq. [Hz] 100 500 25

Table 1. Parameter values for different excerpts.

The excerpts used in the tests are: glockenspiel (GLCK),
ABBA (ABBA), and Danish female speech (SPCH). They
are all mono signals and have a length in the range of 5-
10 s. These represent very different signal types from sin-
gle source signals to complex music containing multiple
sources.

The settings of the sinusoidal analysis-synthesis system
for the different excerpts are shown in Table 1. In all cases a
segment size of 20 ms and overlap-add with a 50% overlap
von Hann window was used. Also, the FFT size was 8192.
For the demodulation filter (3), we use an FIR filter designed
using the window method (Hamming window).

In Table 2 the results of the AB preference tests are
listed for the individual excerpts. 9 experienced listeners
were used. It can be seen clearly, that there is a strong pref-
erence for the multiband model in the two cases, where the
signals contain several sources, namely ABBA and glocken-
spiel, whereas for the case of speech, the preference tends
toward equal. Significance has been determined by a small-
sample case sign test (binomial distribution) using a 0.05
level of significance.

Results of Listening Tests

Preference
Excerpt Singleband Multiband Significant
ABBA 11% 89% Yes
GLCK 11% 89% Yes
SPCH 56% 44% No

Table 2. Results of AB-preference tests.

Also, the results were verified using an objective mea-
sure. As a suitable perceptual model that also include tem-
poral masking phenomena, we used the Dau et al. model
[12]. This model consists of a filterbank that resembles crit-
ical band filtering, followed by an inner-haircell model and
adaptation loops which account for the temporal masking
that occurs in the auditory system. The resulting internal
representation is low-pass filtered and used for a perceptual
distortion prediction by calculating the mean squared dif-
ference between the internal representations of the original



Results using the Dau et al. Model

Distortion
Excerpt Singleband Multiband
ABBA 7270 5431
GLCK 931 644
SPCH 412 426

Table 3. Distortions calculated using the Dau et al. model.

and modified signal. The distortions are listed in Table 3.
The Dau et al. model confirmed the results of the listening
tests with the multiband model outperforming the single-
band model in two first cases while the difference for the
speech is very small. The overall distorition is highest for
the ABBA excerpt, because it is a complex signal, whereas
the total distortion is lowest for the speech signal, due to
its limited bandwidth. That there is a slightly higher dis-
tortion for the multiband model for the case of SPCH can
be attributed to the additional processing of the multiband
system and the shape of the filters of the filterbank.

The conclusion is that for particular single sources such
as speech, the singleband model performs very well. This
is in line with [5], where also members of brass, wood-
wind, and string instrument families are mentioned as sour-
ces being well modeled by the singleband model. For more
complex signals such as superpositions of multiple sources,
there is a great need for multiband modeling and coding,
which is clearly indicated by the high preference for multi-
band modeling of ABBA.

That the singleband model works well for single sources
is an indication that the model in Eq. (1) can indeed form
the basis of compression not only in terms of subbands, but
also in terms of sinusoids sharing an amplitude modulating
signal, i.e. by a decomposition into sources.

4. CONCLUSION

In this paper, we have investigated the need for taking tem-
poral phenomena in audio modeling and coding into ac-
count in a way that is frequency dependent. This has been
done in the context of sinusoidal modeling, where we have
applied amplitude modulation in order to achieve better tem-
poral modeling. We have presented a multiband sinusoidal
analysis-synthesis system that utilizes amplitude modula-
tion to achieve frequency dependent temporal resolution.
Finally, we have compared this multiband model to a com-
monly used singleband model and it has been demonstrated
using both an objective perceptual distortion measure as well
as listening tests, that significant improvements are achieved
by this for complex signals containing multiple sources such
as general audio, and that the singleband model performs
very well for particular single sources.
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