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ABSTRACT

Several second-order optimization methods for gradiestela
algorithms have been proposed over the years, but theylysual
need to compute the inverse of the Hessian of the cost fun(dio
an approximation of this inverse) during training. In moases,
this leads to a®(n?) cost in time and space per iteration, where
n is the number of parameters, which is prohibitive for large
We propose instead a study of the Hesdiaforetraining. Based
on a second order analysis, we show that a block-diagondaiates
yields an easier optimization problem than a full Hessiap.algo
show that the condition of block-diagonality in common rriaeh
learning models can be achieved by simply selecting an appro
ate training criterion. Finally, we propose a version of 8¥M
criterion applied to MLPs, which verifies the aspects higjmied

in this second order analysis, but also yields very good igdne
ization performance in practice, taking advantage of thegina
effect. Several empirical comparisons on two benchmarasgds
are given to illustrate this approach.

1. INTRODUCTION

Optimization by gradient descent is widely used by variows m
chine learning algorithms such as back-propagation of e &
Multi-Layer Perceptrons (MLPs) and Radial Basis Functifis
Unfortunately, empirical evidences show that results iokth af-
ter training a model by gradient descent are often highly-var
able. Hence, in the last few decades, several researchers pr
posed various enhancements [2] to classical gradient neslgm-
rithms. Most of these enhancements focus on variationscofse
order optimization methods [3], and thus have to computaeci e
training iteration the inverse of the Hessiaof the cost function.
Therefore, the time complexity of the resulting algorithgrews
in O(n®) per iteration, and i (n?) in space, where is the num-
ber of parameters. Thus these algorithms become uselegsrfor
large datasets and models. Some enhancements which caitapute
eratively the inverse of the Hessian have been proposed asit m
of them still have a cost i (n?) per iteration. In the end, most of
the time, people rely on simple stochastic gradient desebith
has a cost i) (n) per iteration, and which in general outperforms
most other methods on large problems [2].

Instead of dealing with the Hessian during training as sdver

ing a second order Taylor approximation. We show that a block
diagonal Hessian yields an easier optimization problem ¢htull
Hessian. We also illustrate this with the case of MLPs whiee t
condition of block-diagonality can be achieved by simpligstng

an appropriate training criterion. Then, in Section 4, weppise a
version of the Support Vector Machine (SVM) criterion apglto
MLPs, which verifies the aspects highlighted in this secomidio
analysis, but also yields very good generalization peréoroe in
practice, taking advantage of the margin effect.

2. FRAMEWORK

We consider two-class classification problems: given aitngiset
of T examplegx:, y¢),_, o With (x¢,y:) € R*x{—1, 1} where
x¢ is the input vector of the™ example, andy; is the correspond-
ing class, we would like to find a functiofy-) such that

b

Our interest is to study functions which can be trained bylignat
descent techniques. Due to the lack of space, we will foclysam
Multi-Layer Perceptrons (MLPs), but this work can be exeshtb
other models [4]. The MLP we consider here has one hiddem laye
of N units:

f(x¢) >0 wheny; =1

f(x¢) <0 wheny = —1 1)

N
Fx)=b+ D anh(wy x) 2

wherew,, € R¢ are the weights of the hidden layety, € R are
the weights of the output layer, ahds the bias of the output layer.
h(-) is a transfer function which is usually a hyperbolic tangent
It has been shown in [5] that MLPs with one hidden layer and
hyperbolic tangent transfer functions are universal agiprators

of real valued functions. This means that there exist at lelas
MLP such as in (2) which satisfies conditions (1).

2.1. Training with Gradient Descent

Given a modelfy (-) which could be an MLP, we select a cost
functionC(fe (x), y), and we minimize the cost

other methods do, we propose a study of the Hessian of the cost

function beforetraining. Thus, after a presentation of the frame-
work in Section 2, we analyze in Section 3 the cost functian, u
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lwhich is the second order derivative of the cost with resfepairs of
parameters.

T
0" = argmein % ZC(fe(Xz), Yt) (3)
=1

2To simplify the notation, we suppose here that the last dnatd of
the x vector is1, and thus the bias of unit is represented by the last
coordinate ofw,.



using stochastic gradient descent. One of the most comn&in co
functions used for classification is the mean-squared éM&E):
Clfo(0), ) = 3y — fo(@))?
It can be shown [1] that with an infinite amount of data, the-min
imum of the MSE criterion is obtained whefs (x) is equal to
the true posterior probabilifyp(y|x). It has also been shown [6]
that taking the decision which maximizg§y|x) leads to the min-
imum classification error rate. Hence, the use of the MSEmoit
is relevant for classification. However, in a likelihoodrfrawork,
minimizing the MSE criterion is equivalent to maximizingileeli-
hood under the hypothesis thais generated from a smooth func-
tion with added Gaussian noise. Sincis a binary variable, some
researchers prefer to consideas coming from a Bernoulli distri-
bution, which leads to another well-known criterion, oftailed
“cross-entropy” (CE) [1]. This one can be rewritten as thofo-
ing, in the case of a two-class classification problem:

C(fo(x), y) — log pe (y|x)

log(1 + exp(—yfo(x))) - (4)

Once again, with an infinite amount of data,(y|x) which maxi-
mizes the likelihood tends to the true posterior probabijlity|x).
Thus, as for the MSE criterion, the CE criterion minimizes-ul
mately the classification error.

2.2. Experimental Setup

Experiments shown in this paper have been performed usig th
two biggest datasets available on th€l web site. The first one

is UCI Forest We modified the 7-class classification problem into
a balanced binary classification problem where the goal was t
separate clas3 from the others. We used 100,000 examples for
training, 10,000 for validation and 50,000 for testing. Tee-
ond dataset i&)CI Connect-4 We modified the 3-class classifica-
tion problem into a balanced binary classification problehere
the goal was to separate class “won” against the others. @& us
50,000 examples for training, 7,000 for validation and ©0,6r
testing. Validation sets were only used to select hypeaipaters

of the models in Section 4.

3. LOCAL BEHAVIOR OF COST FUNCTIONS

In this section, we will focus only on thteaining performance of
several architectures, trained with gradient descenteTabhows

Criterion Train Err. (%) Train MSE
Forest| Connect-4| Forest| Connect-4

MSE 13.0 8.2 0.41 0.31

CE 10.3 0.0 0.30 0.01

Table 1. Train errors for MLPs trained with different criterions.

a preliminary comparison of an MLP trained using the MSE and
CE criteria. The classification error rate has been chosenro
pare performances because both MSE and CE criteria tendhte mi
mize the classification error, as highlighted in the presisection.

Swith class labelgy € {0, 1}, which can be obtained in our case by
simple rescaling.

We added an evaluation of the MSE efrtw be more convincing.
We chose an arbitrary large number (500) of hidden units.eMor
over, all other hyper-parameters, such as the learning waee
also selected according to the training set. For both destate
training performance of an MLP trained with MSE criteriorsia-
tistically significantly worse (witt99% confidence) than an MLP
trained with the CE criterion. The fact that, on these twasdats,
an MLP trained with the CE criterion has a significantly lower
MSE error than an MLP trained with the MSE criterion clearty d
notesan optimization problem with the MLP trained with the MSE
criterion.

3.1. Second Order Optimization Algorithms

To understand these differences of performances, we peojgos
study thelocal behavior of each model and its corresponding cost
function. Given a modely (-) where we want to optimize pa-
rameterd, and given a vector of parametdts, the cost function

Ex«4(0) = C(fo(x), y)) can be approximated with respect@o
around@®, by a second order Taylor expansion:
Ex,y (0) = Ex,y (00)
o OBy (6°)
+(0 —0°) 20
1 o\T o o
+5(6—6°)" Hx,,(8°) (6 - 6°)
+o([|6 — 6°]3) (5)

wheredEx,,(0°)/06 and Hx,,(0°) are respectively the gradient
and the Hessian matrix dfx,,, with respect t@, evaluated af°.
We usel|.||. as the Euclidean norm for vectors, andd — 0°||2)
to represent a term negligible with respect|tb— 6°||7.

Because of the lack of space we will not focus on the first
derivative in this paper. Our main concern will be the stutithe
Hessian.

3.2. Advantage of a Block Diagonal Hessian

Let us consider a moddl (1) where the parameter vectércan
be segmented into several sub-vectdrs (01, 02 ...0,). Then,
given a current stat@’, and if we we forget negligible terms with
respect td|@ — 0°||2, the local quadratic approximation (5) can be
rewritten as:

Ex,y(e) Ex;y(eo)

+Ze-
+Z (6: —62)

02)7 8Ex832)(0 ) ©6)

TH,(0°) (6; - 65)

Ex,y

06; 00 ;
ideal case wherély,, is block- diagonal, that is if/%7, = 0 for
1 # j, this leads to

whereHW isthe matrlx using vectorial derivation. In the

Bxy(0) = Bxy(0°)+ 3 Ek,(0:) ™

“In order to have comparable results, we rescaled the outpbiapility
pe (y|x) of the MLP trained with the CE criterion between -1 and 1.



where

7 0Fxy(60°)

H BN |
I R T 5
1 o 1,4 o o . o
+5(8: = 07)" Hye,(67) (0: — 67) . 5 :
HE BN
Equation (7) shows that the error functiéh , (8) can be split e o
into n independent error functions;, , (6;). In other words, the

optimization of a sub-vectd; is locally independent of the others

0;, j # i. Therefore, the optimization problemrisuch simpler (a) Hessian for MSE (b) Hessian for CE
than with a full Hessian where the modification of only one pa-

rameter would also affect the modification of all others. ) o ) ) ) )

If Hiy., is not truly block-diagonal, it can be shown that the Flg. 1. D(_escrlptlon of th_e I—_|ess_|an matrix qbtalned W|th_ an__MLP
more the spectral norH 7, | of the blocks of the Hessian out- trained with thg MSE criterion in (a) and with the CE criteriim
side the diagonal tends to zero, the more equation (7) is-accu (0)- The Hessian has been averaged over all the exampless MLP
rate, and the more training of each sub-vect®rsbecomes in- haye 10 hl_dden units. Each_block corresponds to a pair oehidd
dependent. Generally speaking, we can conclude that thetmer ~ UNits, and is represented by its spectral norm. ResultseoRdrest
Hessian is block-diagonal, the easier should be the triofrthe dataset, with 10,000 training examples, after 5 iterations
model.

hyper-plane and the two classes. Thus, the SVM solution is a
trade-off between maximization of the margin and minimaat
Let us now analyze the Hessian of the MLP given in (2) that woul of the classification error. More formally, given a hypeaip
be respectively trained with the MSE and CE criteria. Fingtt fa,(x) = 0 With fas(x) = ax +b (e € R% b € R), the

3.3. lllustration

Hessian when trained with the MSE criterion: SVM problem is equivalent to minimize
" T
2 Ex L(a, b) = Z |3 1= yifa 8
0°E Yy ;o h/(w;r X) h/(w;[‘ X) XXT (Z # ]) . (a7 ) 2 Ha”2 + ;l ytf 7b(Xt)|+ ( )

3wi aWj

Note that there is no obvious reason for this Hessian to tend t where|z|; = max(0,2), andy € R* is a constant which acts
zero, whereas if we compute the Hessian with the crossygntro  as a trade-off between the first term which corresponds tmtre

(CE) criterion we get: gin maximization, and the second term which tries to forae th
two classes to be separated. Non-linear SVMs are obtained by
9%Ex.y projecting input vectors in a higher dimensional space, land
Fw w. — Peulx)pe(—ylx) maximizing the margirin this higher dimensional spaceising
7 J . . .
. T . T T .. the so-called kernel trick. As MLP proposed in (2) first sends
X aiaj b (wy x)h(wi x)xx™ (i # j) . input vectors into a non-linear space using the hidden Jaymed
. then separates the data in this space using the output lager,
Here the termpa (y|x)pe (—y|x) = pe(y[x)(1 — po(y|x)) will could maximize the margin in the non-linear space of the MLPs

tend very quickly to zero, since we are training the MLP to max
mize pe (y|x). It will push the Hessian obtained with the CE cri-
terion toward almost block-diagonality (one block for eguir
of units, see Figure 1(b)), whereas the Hessian obtaindu thet
MSE criterion remains full, as shown in Figure 1(a).

Note also that some researchers proposed to add a hyperboli
tangent at the output layer of the MLP proposed in (2) to inapro
classification performances, when training with an MSEecidin.
With similar derivations, it is possible to show that thigpkybolic

using the stochastic version of the criterion (8), as alyeaud-
gested in [8]. Unfortunately, even if this criterion led iraptice
to similar training performances as compared to the CErarite
for ;. = 0, the training was significantly slowed down far> 0.
This could be explained with the fact that wher> 0, we force
the output weights of the MLP to be small, which reduces tlae gr
dient received by the hidden units. In order to fix this prableve
propose to use instead the following cost function:

tangent tends to improve the block-diagonality of the Hagssbut C(f(x), y) = |8 — yf(x)|+ 9)
with the drawback that this block-diagonality correspotuds zero '
first derivative of the cost function with respect to the weggy where € R is a hyper-parameter similar jg which controls

Thus, we observed that the performances were in practioéfsig  the trade-off between the margin maximization and the sejoar

icantly worse than the performances of an MLP trained with th  conditions. After some arithmetics, we obtain the mar i
2

cross-entropy criterion (see [4] for more details). In order to guarantee that we increase this margin by intrgaks
we can fix the norm|a||» to an arbitrary chosen value, but there
4, SYM MARGIN FOR MLPS is an even simpler solution; we can fix the output weight® the

same value (no training). This has a sense in our case, lgetaus
Support Vector Machines (SVMs) [7] generally yield good-per has been shown that such an MLP can approximate any kind of
formance as compared to other algorithms. Given the twsscla boolean functions, and thus, can be applied to classifit§io In
classification problem presented in Section 2, a linear SWillisfia practice, these two techniques to increase the margin dave s
separating hyper-plane which maximizes the margin betwlgen lar results in training and generalization performancde fesults



that will be shown in the following sections were producediky 5. CONCLUSION

ing the output weights to a constant.

In this paper we have analyzed gradient descent algorithitis w
respect to several important aspects. As already knowrkidse
sian plays a major role in the effectiveness of any gradieatent
Not considering the rare cagg (x) = 1 where the cost function  algorithm. We explained why a block-diagonal Hessian sthoul

4.1. Training Performances

is not differentiable, we can derive the following Hessian: yield more efficient training algorithms. We showed on commo
) models how the choice of the training criterion influencesHes-
0" Ex,y =0 (i# ) sian matrix, and hence how to select an efficient traininigigan.
ow; Ow; ' Finally, we introduced a new cost function for MLPs, insplitgy
The Hessian of the cost function is thzmmpletely block-diagonal  the SVM algorithm which yields a block-diagonal Hessian and
which guarantees the local independence in the trainingeoffiid- ables the control of the margin in the hidden layer spaces st

den units. This is verified in practice on the training parfances, ~ function yielded (statistically significantly) better geralization
which are similar to the training performances obtainednaiCE ~ Performance on two benchmark datasets in much less time than

criterion, when we do not maximize the margin, that is, foam ~ SVMs. This work shows that a carefully tuned gradient descen
values ofg. can still be competitive and even outperform recent madieizwe-

ing algorithms in training and generalization performarug also

4.2. Improving Generalization Performances In training time.
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Model Cost _ Test Err. (%) HU Time Factor
Function Forest| Connect-4| Forest| Connect-4| Forest| Connect-4
SVM SVM 12.2 12.6 | 34291 18156 2.7 3.6
MLP MSE 13.9 12.8 200 500 0.4 1.0
MLP CE 111 114 500 500 1.0 1.0
MLP Margin 85 10.3 500 500 1.0 1.0

Table 2. Test errors of several models, including SVMs. Note thabgtler-parameters, especially the number of hidden unite alesen
according to validation sets.



