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ABSTRACT

Using a Parzen density estimator any distribution can be ap-
proximated arbitrarily close by a sum of kernels. In particle
filtering this fact is utilized to estimate a probability den-
sity function with Dirac delta kernels; when the distribution
is discretized it becomes possible to solve an otherwise in-
tractable integral. In this work we propose to extend the
idea and use any kernel to approximate the distribution. The
extra work involved in propagating small kernels through
the nonlinear function can be made up for by decreasing
the number of kernels needed, especially for high dimen-
sional problems. A further advantage of using kernels with
nonzero width is that the density estimate becomes contin-
uous.

1. INTRODUCTION

The filtering problem can be formulated as

xk = f(xk−1) + vk−1 (1a)

zk = h(xk) + wk (1b)

where v and w are the process noise and the observation
noise. The state transition density is fully specified by f and
the process noise distribution and the observation likelihood
is fully specified by h and the observation noise distribution.

p(xk|xk−1) = pv(xk − f(xk−1)) (2a)

p(zk|xk) = pw(zk − h(xk)) (2b)

The problem is to find an update formula from p(xk−1|z1:k−1)
to p(xk|z1:k), where z1:k denotes all observation {z1, . . . , zk}
up to time k. The Bayesian approach [1] gives the following
update:

p(xk|z1:k) = (3)

p(zk|xk)
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1∫
p(zk|xk)p(xk|z1:k−1)dxk

The problem can be broken down to two subproblems. 1)
Find the propagation of a probability density function (pdf)

through a nonlinearity. 2) Modify the pdf according to the
recorded measurements zk. Figure 1(a) illustrates stage one
of the problem.

In equation (4) multiplying with p(zk|xk) can be seen
as stage two, and performing the multi-dimensional integra-
tion

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

(4)
as stage one. In general the integral can not be calculated
analytically, hence, we need some way of estimating the
distribution p(xk|z1:k−1) .

Algorithms fall into four categories: Extended Kalman
Filters, Gaussian Sum Filters, Sigma-Point Kalman Filters
and Sequential Monte Carlo Methods (Particle Filters) [2].
Another way to categorize the methods is Gaussian belief
(Extended Kalman filters, sigma point filters, moment match-
ing), mixture of Gaussians (Gaussian-sum filter, pseudo-
Bayes) and non-parametric methods (Particle filters) [3]. In
the Extended Kalman Filter, the distributions are assumed
Gaussian, but, the functions are not linear. The functions
f and h are linearized around the previous state xk−1 us-
ing a second order Taylor expansion and then the standard
Kalman equations are used. The result is a Gaussian distri-
bution for p(xk|z1:k) (see figure 1(b)). For nonlinear sys-
tems the solution is better than a normal Kalman filter, and
it is accurate to first order. The Unscented Kalman Filter
(Sigma Point Filter) [4] propagates points one standard de-
viation from the previous state xk−1 through the nonlin-
earity, then uses the points weighted appropriately (Gaus-
sian quadrature like) to estimate mean and co-variance of a
Gaussian. Finally this is used in the standard Kalman equa-
tions. It is accurate to the second order.

If the process noise distribution is approximated by a
mixture of Gaussians the family of Gaussian sum filters
arises [5]. In the mixture of Gaussians each mixture compo-
nent is propagated through an extended Kalman filter. The
state update f is linearized around the means of each mix-
ture component and h is linearized around the predicted
value for the mean of each mixture (f(xk−1)). The resulting
distribution is again a mixture of Gaussians. If the process
noise is also non-Gaussian, this too can be approximated



(a) A density propagated through a
nonlinear function.

(b) In the extended Kalman filter,
the distribution is assumed to be a
Gaussian modified by a lineariza-
tion of the nonlinearity around the
previous state.

(c) In the particle filter the densities
are approximated by discrete sam-
ples. These samples can be sent
through the nonlinearity to give an
estimate of the output density.

Fig. 1. Propagation of a pdf through a nonlinearity 1(a)
and different approximations to the propagated distribution
1(b) and 1(c). This is the prediction step corresponding to
equation (1a), the resulting pdf is then modified to match
the measurements equation (1b).

with a mixture of Gaussians. However, in this case the num-
ber of mixing components increases quickly.

Nonparametric methods are an entirely different approach
to nonlinear filtering. In the Particle Filter it is assumed
that the distributions p(xk|z1:k) and p(xk−1|z1:k−1) from
equation (4) can be estimated by discrete distributions (fig-
ure 1(c)). Samples are drawn from the posterior distribution
using importance sampling and a proposal distribution. In
the generic particle filter the transition probability
(p(xk|xk−1)) is used as proposal, but other proposals has
been proposed in e.g. the extended Kalman particle filter
and the unscented particle filter [6], in these methods a filter
(ekf or ukf) is calculated for each particle and the resulting
mixture of Gaussians is used as proposal distribution for the
particle filter. In an attempt to combine the particle filter and
the Gaussian sum filter the Gaussian Sum Particle Filtering
was proposed [7]. In this approach both the density and the
process noise is considered mixture of Gaussians, in each
time step samples are drawn from the mixture approximat-
ing p(xk−1|z1:k−1). These samples are propagated through
the nonlinearity and used to offset the means in a mixture
describing p(xk|xk−1), then samples are drawn from this
distribution too. In this way a discrete approximation of
p(xk|z1:k−1) is obtained and the sample mean and covari-
ance of the new mixtures can be estimated. Unfortunately
the number of mixtures explode, to avoid this mixtures with
small weight can be thrown away. In a similar manner, the
Gaussian mixture Sigma Point Particle Filter [2] uses a bank
of sigma point filters to update p(xk|z1:k−1) then samples
are drawn from the mixture and the importance weights are
calculated before a Gaussian mixture is fitted to produce the
posterior estimate.

In this paper an algorithm based on the Parzen density
estimator is presented. The algorithm is best categorized as
non-parametric, since it can be seen as a direct extension
to the particle filter. The basic concept is to improve the
performance of the particle filter by using a better density
estimate.

The algorithm is similar to the Gaussian Sum Particle
Filter and the Kernel Filter [8], however, it is derived in a
different manner that allows use of any kernel type. The
derivation of the algorithm uses a sample mean estimate of
the integral p(xk|z1:k−1) and a particle filter like update of
the weights. In section 2 the algorithm is derived and in
section 3 experimental results are provided.

2. KERNEL METHOD

With a Parzen density estimator [9, 10] a distribution can be
approximated arbitrarily close by a number of identical ker-
nels centered on points chosen from the distribution. In the
particle filter the kernels are delta functions, but information
can be gained by using a broader kernel.



The distribution at time k − 1 can be approximated by:
p(xk−1|z1:k−1) ≈

∑N
i wi

k−1K(Ai
k−1(xk−1−xi

k−1)), where
Ai is a transformation matrix used to keep track of distor-
tions of the kernel. Each kernel can be propagated through
the mapping p(xk|xk−1) by using a local linearization, yield-
ing a continuous output distribution p(xk|z1:k), this is again
a sum of kernels but the kernels are no longer identical (in
the sense that they are from the same family of functions,
yet they have different parameters).

Using the kernel representation equation (4) can be writ-
ten as:
N∑
i

wi
k−1

∫
pv(xk−f(xk−1))K(Ai

k−1(xk−1−xi
k−1))dxk−1

(5)
Each part of the sum can be handled individually, and under
the assumption that the kernels are small compared to the
dynamic in the nonlinearity, f can be locally linearized. By
linearizing f around xi

k−1 the jacobian J|xi
k−1

= ∂f
∂x |xi

k−1

is introduced and the following change of variables can be
employed: x̂k−1 = xk − f(xi

k−1)−J|xi
k−1

(xk−1 −xi
k−1).

Inserting this in the integral from equation (5) yields:
∣∣∣J|xi

k−1

∣∣∣−1 ∫
[pv(x̂k−1) (6)

K
(
Ai

k−1J|−1
xi

k−1
(xk − f(xi

k−1) − x̂k−1)
)

] dx̂k−1

This integral is an expectation over the process noise

Epv

[
K

(
Ai

k−1J|−1
xi

k−1
(xk − f(xi

k−1) − x̂k−1

)]
and can be

approximated by a sample mean. In the extreme case a sin-
gle sample drawn from pv can be used, and the result is a
translation of the kernel by the noise sample:

Epv

[
K

(
Ai

k−1J|−1
xi

k−1
(xk − f(xi

k−1) − x̂k−1)
)]

≈ K
(
Ai

k−1J|−1
xi

k−1
(xk − f(xi

k−1) − vk−1)
)

,vk−1 ∼ pv

Writing p(xk|z1:k) =
∑N

i wi
kK(Ai

k(xk − xi
k)) It is pos-

sible to identify the centers of the kernels xi
k = f(xi

k−1) +
vk−1 and the transformation matrix Ai

k = Ai
k−1J|−1

xi
k−1

.

By considering equation (4), (5) and (6) the weight update

can be found to be wi
k = wi

k−1p(zk|xi
k)

∣∣∣J|xi
k−1

∣∣∣−1

. This

derivation holds for any kernel, however, for simplicity, in
this paper the kernels are considered Gaussian.

For a Gaussian a change of variables can be employed
such that the update of Ai

k can be replaced with an update
of the covariance matrix as follows:

Ai
k = Ai

k−1 (7a)

Σi
k = J|xi

k−1
Σi

k−1J|Txi
k−1

(7b)

The transformation matrix is absorbed in the covariance ma-
trix.

Fig. 2. Problem with nonlinear state transition, nonlinear
observation process and Gaussian noise. Note that the per-
formance of a Parzen particle filter with ≈ 10 kernels equals
that of a normal particle filter with ≈ 20 kernels.

The transformation matrix A (or Σ in the Gaussian case)
is distorted in each iteration, to avoid to much distortion
a resampling schema can be applied. With a suitable fre-
quency the distribution can be re-approximated by a Parzen
estimator by drawing samples from p(xk|z1:k), choosing A
or Σ to take their initial values and setting the weights equal.

Earlier attempts use the kernels in the resampling phase
where the shape and kernel size are selected based on the
particle statistics (e.g. covariance) [11] . However, the pro-
posed method iterates these properties of the kernel through
the system equations, thus there is no need for optimization
of kernel parameters at every step. In addition, the approx-
imation of the integral stochastically using a sample drawn
from pv includes an inherent resampling step at every it-
eration, which allows the particle filter accuracy to survive
longer than the standard version.

3. EXPERIMENTS

In this section the performance of the Parzen particle filter
will be compared to the performance of the standard particle
filter1. The method is tested on a one dimensional problem:

xk =
xk−1

2
+ 25

xk−1

(1 + x2
k−1)

+ 8 cos(1.2k) + vk(8a)

zk = 10 arctan(
xk

10
) + wk (8b)

Where vk and wk are drawn from Gaussian distributions
G(0, 1) (figure 2) and from gamma distributions Γ(3, 2) (fig-

1Code to reproduce the results can be found at www.imm.dtu.dk/∼tls



Fig. 3. Problem with nonlinear state transition, nonlinear
observation process and gamma distributed noise.

ure 3).

The Parzen particle filter and the generic particle filter
has been used on 100 time series generated using equa-
tion (8).

In figure 2 the mean square error is plotted as a func-
tion of the number of kernels. It can be seen that with few
kernels the methods perform equally good (or bad), but as
the number of kernels increases the kernel method becomes
better. It can be seen that for this one dimensional example
the kernel methods perform equally well, but the number of
particles can be reduced drastically by improving the den-
sity estimate. It is expected that this effect will be even more
impressive in higher dimensional problems.

4. CONCLUSION

A novel algorithm for nonlinear filtering is presented, the
algorithm is based on Parzen density estimates and particle
filter like propagation of the kernel through local lineariza-
tions of the nonlinear function.

It is shown that the improved density estimate help per-
formance both with Gaussian and non-Gaussian noise. In
this work only the special case with a Gaussian kernel is ex-
amined, however it is expected that a broader kernel would
be well suited for long tailed noise, since it will be more
likely to get the particles spread out.

The basic formulation for the arbitrary kernel case has
been derived and performances of various kernel choices
will be compared in a future publication.
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