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ABSTRACT

In this paper, we present a wavelet and filter bank frame-
work for context-independent phonetic classification with
the aim of extending the work towards a full speech recog-
nition system. The framework addresses the limitations of
the Fourier analysis stage commonly used for short-time
spectral representation of speech signals. Also, previous
research pertaining to wavelet analysis for speech process-
ing mostly makes use of off-the-shelf wavelets and dyadic-
based signal decomposition. Our framework provides more
flexibility by taking advantage of the relationship between
wavelet transforms and filter banks, and using two filter de-
sign techniques as well as ’rational’ wavelets. On the stan-
dard 39 phone TIMIT classification task, we achieve 22.9%
error rate on the Core Test set using rational filter banks
and 4-fold aggregation. This is improved to 18.5% when
combined with multiple classifiers defined over non-wavelet
acoustic measurements.

1. INTRODUCTION

The most commonly used measurement in automatic speech
recognition (ASR) is the Mel-Frequency Cepstral Coeffi-
cient (MFCC) [1]. However, such a measurement is lim-
ited in its time-frequency representation since it is inher-
ently a short-time spectral representation. Also, its compu-
tation is typically based on the inner product of the signal
power spectrum with triangular band-pass filters where the
filter shape selection is quasi-arbitrary. In this research, we
propose a wavelet and filter bank framework for feature ex-
traction to improve upon the signal representation as well as
the filter selection.

Wavelets are functions with compact support capable of
representing signals with good time and frequency resolu-
tion. The wavelet transform is well defined within the mul-
tiresolution framework allowing signal analysis at various
scales. Filter banks have also emerged as signal process-
ing tools that analyze and decompose signals into subbands
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Fig. 1. A polyphase implementation of a 2-channel filter
bank.

over different regions of the spectrum. A wavelet trans-
form can be implemented using an adequately designed fil-
ter bank [2, 3]. The filter bank features that we leverage are
perfect reconstruction, regularity order, and orthogonality.

Much research has been done on wavelet analysis for
speech recognition [4, 5, 6, 7]. However, most suffer from
two main drawbacks which we attempt to address. First, the
measurements are commonly extracted using off-the-shelf
wavelets that are not optimized for speech processing. We
examine two techniques, Filter Matching and Attenuation
Minimization, to design a filter, and hence a wavelet that
matches desired features. Second, filter banks implement-
ing wavelet transforms are typically dyadic, splitting the
spectrum in half. We examine tree-structured filter banks,
which were previously proposed as potential solution, al-
lowing iteration at both high and low channels of a 2-channel
filter bank [8]. We then look into rational filter banks to
obtain finer frequency resolution and naturally simulate the
critical bands of the human auditory system [9].

In Section 2, we present a brief overview of the frame-
work including the two filter design techniques and the ra-
tional filter banks. In Section 3, we describe the experi-
mental setup, and in Section 4, we present our results. In
Section 5, we summarize and propose future extensions to
the current framework.

2. WAVELET AND FILTER BANK FRAMEWORK

Within the multiresolution framework, continuous-time wav-
elets and discrete-time filters are closely connected. Fil-
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Fig. 2. A tree-structured implementation of a filter bank and
the corresponding frequency partitions.

ter banks consisting of analysis and synthesis filters, down-
samplers and upsamplers can be used to implement wavelet
transforms efficiently. Fig.1 illustrates a 2-channel filter
bank where the analysis and synthesis filters Hp(z) and
Fp(z) are implemented in the polyphase domain using poly-
phase matrices [2, 3]. We are concerned with perfect recon-
struction orthogonal filter banks characterized by parauni-
tary matrices that can be factorized using Lattice and House-
holder factorizations [3]. This will be useful when imple-
menting the filter design methods.

2.1. Tree-Structured Filter Banks

A 2-channel dyadic filter bank splits the spectrum in half
at each iteration, and results in a constant-Q octave band
when iterated on the low-pass channel. Such a filter bank
can be extended to an arbitrary tree-structure by allowing
iteration on both channels. Special attention should be given
to the mirroring of the spectrum on the high-pass channel
[3]. Fig.2 illustrates an example of an iterated filter bank
and the corresponding frequency partitions. We experiment
with several frequency partitions, and adopt a tree-structure
that consists of 8 filters uniformly distributed over 0-1 kHz,
4 over 1-2 kHz, 8 over 2-4 kHz, 4 over 4-6 kHz, and 2 over
6-8 kHz. The result is a 26-band filter bank structure that
roughly incorporates the critical band effect.

2.2. Filter Design

We examine two filter design techniques with the aim of
providing flexibility to the framework and overcoming the
limitation of previous research pertaining to wavelet analy-
sis for speech processing, as far as wavelet selection is con-
cerned [5, 6, 8]. Instead of off-the-shelf wavelets, we are
interested in those corresponding to filters with sharp cutoff
and good stopband attenuation, and hence good frequency
selectivity. In the two filter design methods, we take into
consideration orthogonality and regularity order of the fil-
ter. The concept of regularity is related to the smoothness
of the wavelet function which is, in turn, loosely related to
the number of vanishing wavelet moments. Intuitively, the
more the number of vanishing wavelet moments, the greater
the number of zeros at the aliasing frequency and the more
frequency selective the corresponding filter is.

2.2.1. Filter Matching

The Filter Matching method minimizes the difference in
modulus between the designed and desired filter given that:

dlH0(ω)

dωl
|ω=π = 0 l = 0 . . .N − 1 (1)

where H0(ω) is the frequency response of the analysis low-
pass filter being designed, and N is the number of desired
vanishing moments. The designed filter is represented using
lattice factorization which imposes the orthogonality of the
filter bank [2, 3]. The algorithm implementation is based on
a sequential quadratic programming method for constrained
optimization. We test the algorithm by matching it to two
desired filters: the Butterworth filter of order 10 and cutoff
frequency π/2 and the ideal low-pass filter.

2.2.2. Attenuation Minimization

The Attenuation Minimization method is a special case of
the rational filter bank design technique [9]. The idea is to
match the filter to an ideal low-pass filter by minimizing the
difference in modulus between the two filters. However, as
it has been shown in [9, 10], the problem can be reduced
to an attenuation minimization. All the filters are designed
with a regularity order of 1 in order to guarantee conver-
gence of the algorithm. Using this technique, we obtain
filters that exhibit good attenuation.

Fig.3 illustrates low-pass filters designed using the two
techniques. The ideal low-pass filter with normalized cutoff
frequency 0.5 and the filter corresponding to the Daubechies
wavelet of order 12 [11] are also included. Match Ideal
corresponds to a filter designed using the first technique to
match the ideal filter. Filter 5 and Filter 6 are 30-tap and
34-tap filters designed using the second method.
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Fig. 3. The frequency responses of three designed filters.
The ideal and Daub12 low-pass filters are included for ref-
erence.
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Fig. 4. A filter bank of rational sampling factor M/(M −1).

2.3. Rational Wavelets and Filter banks

A dyadic filter bank splits the spectrum in half at each iter-
ation, and has a sampling factor of 2. If the filter bank has a
sampling factor of the general form M/(M − 1), the spec-
trum will be split into the bands: [0, M−1

M
π] and [M−1

M
π, π].

We obtain a finer frequency resolution as well as a Q-factor
tunable to the human auditory system. In fact, the Q-factor
corresponding to such a filter bank is found to be:

Q =
bandwidth

center frequency
=

1

M − 1/2
(2)

This gives us M that matches a desired Q. Two interesting
sampling factors are 8/7 and 6/5 that allow filter banks to
mimic the Mel and Bark scale respectively.

It has been shown that rational filter banks can be put in
the form illustrated in Fig.4 [12]. In [9, 10], Blu proposes an
algorithm for designing such filter banks. Due to space con-
straints, we do not describe it in detail but give some insight
behind it. The aim is to find the best frequency selective
low-pass filter G(z) given orthogonality and the regularity
order of the filter bank. The problem is reduced to minimiz-
ing the attenuation band of G(z) and is formulated using the
Lagrange multiplier method for constrained minimization.

Blu devised a recursive implementation of the algorithm
with condition for convergence being minimal perfect re-
construction error. After finding the low-pass filter, the high-
pass filter is derived from it by taking advantage of orthog-
onality conditions and using Householder factorization [9].

We use this technique to examine rational filter banks.
To our knowledge, there has been no implementation of ra-
tional filter banks to feature extraction tasks prior to this.

The regularity order is set to 1 for all the designed fil-
ters. The rational filter banks are iterated on the low-pass
channel N times until the lower cutoff frequency of the last
band-pass filter obtained is close to 1 kHz. A 30-tap filter
designed using the Attenuation Minimization technique di-
vides the 0-1 kHz region into 8 equipartitions. This gives
us frequency partitions that mimic the critical bands. The
length of the filters is large. This is necessary in order to ob-
tain filters with narrow passbands and also good frequency
selectivity.

3. EXPERIMENTS

The classification experiments are performed on the TIMIT
corpus. Following common practice, the 61 phone labels
in TIMIT are collapsed into 39 labels prior to scoring and
glottal stops are ignored. We use the 462 speaker training
set, 50 speaker development set, 24 speaker core test set for
final testing, and 118 speaker full test set for significance
level scoring. Segmental acoustic features described below
are extracted over phonetic segments. Diagonal Gaussian
mixture models are implemented with a minimum of 61
datapoints per mixture component and a maximum of 96
mixture models per phone.

The acoustic measurement of the baseline classifier con-
sists of 14 MFCCs computed using short-time Fourier anal-
ysis at a rate of 5ms over 25.6ms frames. A 76-dimensional
feature vector is obtained by concatenating 3 MFCC and
energy averages over segment thirds, 2 MFCC and energy
derivatives at segment boundaries, and a log duration [13].

For our framework, we first specify the wavelet type and
the spectral partitions and then compute the wavelet trans-
form over 20ms frames at a rate of 5ms. This is equivalent to
processing the signal using an N -band filter bank. We then
compute the energy for each of the N bands and perform
their log transform. The result is an N -dimensional acous-
tic measurement used to generate a (5N + 6)-dimensi-onal
segmental feature over a given segment derived similarly to
the MFCC-based segmental feature. Principal component
analysis is used to reduce the feature space dimensionality
as well as whiten it. The feature space dimension used in the
experiments is 76 similarly to the baseline. A 26-band tree-
structured filter bank is used to extract the acoustic measure-
ments (A1-A4 in Table 1) except for the rational filter bank
(A5), where 22 bands are extracted.

4. RESULTS

To evaluate the results, we select five acoustic measure-
ments listed in Table 1, where the classification results for
the phonetic subclasses are also reported. The baseline re-
sults are included for reference. The error rates correspond-
ing to all the acoustic measurements match or exceed that of
the MFCC on the Development set. Also, the results listed
in Table 1 are reminiscent of those obtained by Halberstadt
[14]. Although the overall error rates are close to each other,
there is a difference in performance over the phonetic sub-
classes. This suggests a hierarchical approach where filters
optimized to different subclasses are designed.

The acoustic measurements are also evaluated on the
Core Test and Full Test sets for significance level scoring.
The McNemar significance test is used [15]. A5 consis-
tently outperforms measurements A1-A4. Compared to the
baseline, A5 exhibits improvement that is statistically sig-



Acoustic
Meas.

(%) Error rate on the dev set
ALL VOW NAS STP WFR SFR CL

MFCC 23.9 31.6 25.3 27.4 28.5 21.5 4.2
A1 23.6 30.4 26.5 28.9 28.1 21.2 4.2
A2 23.4 31.5 26.5 28.9 25.4 23.8 3.7
A3 23.4 30.7 23.5 28.7 26.9 21.2 4.3
A4 23.1 30.4 23.4 28.7 27.6 21.0 3.6
A5 23.2 30.5 25.5 26.4 27.7 22.7 3.3

Table 1. Classification performance (overall and phonetic
subclasses) of acoustic measurements A1-A5 and the base-
line (MFCC) on the Development set. A1 corresponds to
the Daubechies wavelet of order 12, A2 to a filter designed
using Filter Matching to match the ideal filter, A3 and A4

are a 30-tap and 34-tap filters respectively designed using
Attenuation Minimization, and A5 corresponds to the ratio-
nal filter bank of sampling factor 8/7.

nificant at the 0.05 level.
We have also implemented 4-fold model aggregation

[16] for A5 obtaining 22.9% error rate on the Core Test
set. We then combined this classifier with 8 other classi-
fiers defined over 8 segmental features described in [14] ob-
taining an error rate of 18.5% on the same set, which is an
improvement over the 18.7% obtained without the wavelet-
based feature.

Our results compare favorably to those mentioned in the
literature as well as those of the baseline classifier. The best
error rate for context-independent phonetic classification is
18.3% on the Core Test set reported by Halberstadt who
used hierarchical classifiers [14]. Clarkson and Moreno ob-
tained 22.9% on the same set using Support Vector Ma-
chines (SVM) [17]. Zahorian et al. obtained 23.0% on the
Core Test set using spectral/temporal features and a neural
network classifier [18].

5. DISCUSSION AND FUTURE WORK

We have presented a wavelet and filter bank framework for
phonetic classification in which we have exploited two di-
mensions of the wavelet and filter bank theory: filter de-
sign and rational sampling.We have shown that off-the-shelf
wavelets do not always give the best results, and there is a
need for wavelet design. We have also shown that a dyadic
filter bank implementation is not optimal, and we have ex-
amined a method for rational filter bank design.

The framework, is however, still primitive in terms of
design as well as implementation. For example, it is tested
on the TIMIT corpus, which is a clean data set. It would
be challenging to implement it on a noisy data set, where
wavelets have proven to be efficient in denoising tasks [4].
The framework is also limited to the task of phonetic classi-

fication. A natural extension would be phonetic and word
recognition. Finally, the filter design techniques that we
have used in this thesis are simple and do not always give
satisfactory results or even converge. It would be interesting
to investigate other methods or even implement automatic
filter optimization and generate filters that adapt to a task.
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