INTERPRETATION OF STATE SEQUENCESIN HMM FOR ACTIVITY REPRESENTATION
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ABSTRACT

We propose a method for activity representation based on seman-
tic events, using the HMM framework. For every timeinstant, the
probability of event occurrence is computed by exploring a subset
of state sequences. Theideais that while activity trajectories may
have large variations at the data or the state levels, they may ex-
hibit similarities at the event level. Our experiments show the ap-
plication of these events to activity recognition in an office envi-
ronment and to anomal ous trajectory detection using surveillance
video data.

1. INTRODUCTION

Activity modeling has several applicationsincludiing activity recog-
nition, object classification, segmentation, video indexing etc. Ap-
proachesusing statistical models, temporal templatesamong others
have been proposed to represent repetitive activities such aswalk-
ing, running, gestures etc. [1], [2]. Not all activities can be rep-
resented using direct statistical models due to large data variabil-
ity and semantic ambiguity [3], i.e., multiple samples correspond-
ing to the same activity may have drastically varying appearances.
In such cases, activities may be regarded as a sequence of certain
events that are semantically significant. We propose an automatic
event detection method usingthe HM M for activity recognitionand
anomal ous trajectory detection.

Weillustratethe use of eventsin activity representation through
the following example. Consider the activity of picking up an ob-
ject. Picking up a pen lying on the desk and picking up a book
from the cabinet may create dissimilar trajectoriesthough the act of
picking up closely resemble each other in the two cases. Only the
few frameswhen the object is picked up is relevant to the recogni-
tion task. Similarly, in a surveillance scenario in an airport where
people deplane and walk toward the gate, one may be interested in
knowing whether the people follow a normal path. The exact tra-
jectoriesof the peoplemay not beimportant, and certainkey frames
in the video sequence may be sufficient to characterize the activity.

TheHMM hasbecomeapopular tool in many recognitiontasks
including speech, gesture, action etc. owing to its powerful repre-
sentation and tractability. However, a direct application of HMM
isnot feasible as we have already mentioned. Further, the optimal
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state sequence of the HMM is used to evaluate the likelihood with-
out requiring aphysical interpretation. We explore asubset of state
sequences that identifies events by analyzing certain transitionsin
the hidden state. An event is defined as the maximum over all pos-
sible transitions between two distinct hidden states such that the
past and future states each have a support of p frames of observa-
tion vectors. The event probability sequence is used to compare
two activities.

2. EVENT DETECTION USING HMM

Before describing the event probability sequence, we review the
basic HMM notation. Detailed explanation of the HMM may be
found in several sourcesincluding [4].

o Let O = {o1,...,0r} represent the observation symbol
sequence of length 7'.
o Let@ = {q1,...,qr} bethe (hidden) state sequence with

q: € {1,..., N}, where N isthe number of states.

o A = [a;;]~ x v ISthestatetransition matrix whose elements
ai; = P(q: = j/q:—1 = 1) aretransition probabilities.

e bj(0;) = P(o:/q: = j) isthe observation symbol proba-
bility.

o Initial probability of statesisgiven by IT = [x1, ..., 7n].

Themodel parametersare estimated suchthat P(O/)) ismax-

imized using either the max of the propabilities over all possible
state sequences @, or by summing over al possible Q.

e The Viterbi algorithm computesthe likelihood for the opti-
mal state sequence using P(O/A) = maxq P(Q, O/}).

e Thelikelihood by summing over all possible state sequences
isgivenby P(O/X) =}, P(Q,0/X)

The variables used in estimating the model parameters are

Forward variable «v,(7)
Backward variable 8. ()

= P(ofy1/q: = ,7)

Probability of passing through state: at time¢ and state j at ¢ + 1
conditioned on the datais given by ¢,(i,j) = P(q: = 1, qi41 =
/0, ).

The optimal state sequenceis not driven by the eventsthat oc-
cur during the activity, but by the likelihood of the observed data.
In this study, we explore a subset of these state sequences, which
are likely to highlight some events. The hypothesisis that events



can be extracted more easily by looking for certain changesin the
state sequence. Though the states themselves may look different
across samples of the same activity, certain transitions in the hid-
den statesmay be preserved. Such transitionsrepresent events. An
activity may be described as a sequence of events.

The large variability in the trajectories associated with an ac-
tivity makesit difficult to describe the events directly from the ob-
served data. Further, rapid fluctuations due to eventstend to be re-
flected in the state sequence as well, unless the HMM is broadly
tuned to mask the events. We proposeamethod to capturethe events
from the sequences of hidden states. Define a variable 5% (1, ),

p=1,2,..., whichissimilar to &(i, j), asfollows.
m(i,5) = Pla—1=1i,q=1,q41 =, q42=37/0,N)
77?(2: ]) = P(qt—P = i: qi—p+1 = i; et = i:
Ge+1 = J,qe42 = J, -+, Qetpt1 = /0, A) (1)
er(k,l) = max (1, 7) @)

where (k,l) = arg max;x; 5% (1, 7). The quantity e?(k, {) repre-
sentsthe event probability at timet. A large value of eX (%, {) indi-
cates the presence of an event. The nature of the event is specified
by (%, {) and the strength of the event by the probability value.

Plgi—1 =1,q0 =1, @e41 = J, qu2 = §,0/A)
PO/

at—1(2)aiibi(0t)aizb; (0141)a;;b;(0e42)Bi42(4)
P(O/X)

ni (1,5)

Similarly, forp > 1,

@i—p(i)ag;bi(0i—p+1)bi(0i—pt2) .. bi(0s)ai; X
bj(0r41)bs(0142) - . b (0r4p41)ag; X
Betp+1(3)/ P(O/A)

The choice of p determines the relative strength of the domi-
nant and spurious peaks (events) in e;.

n (7)) =

3. RECOGNIZING ACTIVITIESUSING EVENT
PROBABILITY SEQUENCE

In this section, we will outline our approach to activity recognition
based on the event probability sequence e;. From the video data,
the motion trajectory of the object is extracted and smoothed out.
Using the Baum-Welch algorithm, the parameters of the HMM are
computed from tragjectoriesof an activity[4]. Two activitiesthat are
the samein the semantic sense but differ in context areusedto train
two separate models. Similarly, trajectories of an activity that are
captured from different viewpoints are used to train separate mod-
els. Thus, the trgjectories corresponding to picking up a pen from
the desk and picking up a book from the cabinet will have two dif-
ferent models, while two instances of picking up apenlying onthe
table, without changing the viewpoint will be used as multiple ob-
servationsto train an HMM.

We compute »; in (1) and the event probability sequence e,
in (2), using the trained HMM for all the training data. The event
probability sequence formsthe signaturefor the trajectory. Activi-
tiesthat are similar but appear differently will resembleat theevent
probability level, even though the state descriptions may be differ-
ent. Events are thus abstractions of the hidden states, which are
themselves abstractions of the observed data.

Given atest trajectory belonging to an activity, we computethe
event probability sequences for each of the distinct HMMs avail-
ablein the gallery. The event probability sequence for each HMM
iscompared with each of the event probability sequencesof thetra-
jectories of the training data corresponding to this HMM. If there
areatotal of N trgjectoriesin thetraining data set for al the activ-
ities (HMMs), then there will be N' matching scores for each test
trajectory. The matching scorefor comparing two event probability
sequences is obtained using dynamic time warping agorithm [5].

For a better understanding of the role of the event probabili-
tiesin activity representation, suppose that the segmental k-means
algorithmisused in training. Roughly speaking, the motion trajec-
tory is segmented into different states. Consider afictitioustrajec-
tory obtained by drawing a horizontal linein air. This can be done
by moving thehand fromleft toright, or fromright toleft. Sincethe
appearance of the two trajectories differs significantly, we cannot
use an HMM to represent the activity directly. On the other hand,
using event probabilitiesin both the cases, we ge, 3 maximaalong
the event probability sequences as the trajectory transits from one
segment to the next.

lvanov and Bobick [3] split the recognition task into two steps
- they segment the activity using HMMs that are tuned to some
parts of the activity, and then use stochastic context-free grammar
to parse the activity. Our method computes the events within the
HMM framework. Also, avocabulary of activitiesis not required
in our method. Rao et al. [6] represent actions using dynamic in-
stants, which are points of maximum curvature along thetrajectory.
We will discuss the relation of the dynamic instants to our method
in Section 5.

4. DETECTING ANOMALOUSTRAJECTORY

In this section, we will outline our approach to anomaly detection
based on the event probability sequence e;. In a surveillance sce-
nario, one of the tasks is to automatically check whether an activ-
ity is occuring along expected lines. It iscommon to have severa
instances of the normal activity, and very few samples of an un-
expected case, which makes it hard to model the unusual activity.
Some approacheslike[7] useamodel to describethe usual activity,
while[8] proposes an unsupervised schemeto compare two activ-
ities, and detect an unusual case based on the the extent of similar-
ity. We use HMMs along with the event probability sequences to
represent the normal activity. We compare trajectories at the event
probability level to check for anomal ous behavior.

For a particular activity, we use multiple observations of the
normal activity to train an HMM. For each of the normal trajecto-
riesin the database, we compute the variable . (z, y) asdefined in
(1) and the event probabilitiy sequence e; defined in (2). Givena
new trajectory O™, we compute its associated event probability
sequencee;(k,!) = maxiz; P(qi—p = 1, qt—pt1 = 1,..., @t =
L1 = 3, qit2 = Jye- Qept1r = 3/0"Y,Ag), where A
is the HMM associated with the normal activity, and (k, I) is the
maximizing argument (z, 7). We compare thisevent probability se-
guence with the set of eventsin the database. An anomaly is said
to be present in that part of the trajectory where either an event did
not occur as expected or if an unexpected event occured.

5. EXPERIMENTS

Wedemonstrate our activity represention method using two datasets
- the UCF dataset and the TSA dataset.



@ (b) © (d

Fig. 1. (@) z—, y coordinates of hand trajectoriesfor “pick up ob-
ject from desk”, (b) corresponding event probability. (c) shows
thetrajectory of “pick up umbrellafrom cabinet” and (d), its event
probability sequence. Both (b) and (d) have two dominant events.

=
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Fig. 2. Trajectoriesare shownin thetop row and the corresponding
event probability sequences in the bottom row. (@) and (b): Two
instances of “open door”; (c) and (d):"” Close door”

5.1. Activity Recognition

The UCF dataset consists of 60 trajectories of common activi-
ties, and are described in [6]. We divide the list of activities into
7 main categories: open door, pick up, put down, close door,erase
board, pour water into cup and pick up object and put down else-
where. The hand is tracked as it performs the different activities
and the resulting trajectory is smoothed out using anisotropic dif-
fusion. Figures1 and 2 show some examples of the hand trajectory
executing different activities. Typically, most of theactivitiesinthe
dataset last for afew secondsi.e., of the order of 100 frames. The
number of eventsin an activity rangesfrom1 to6. At thematching
stage, only these events are compared.

Finding eventsin the training data: The Baum Welch al-
gorithm isused to estimate the parameters of the HMM. In our ex-
periments, we use a 4 state, single Gaussian, left-to-right model.
Using the parameters of the trained HMM, we compute the »? and
e, for different values of p asdefinedin (1) and (2). In our recogni-
tion experiments, p was set to 5. The HMM model aong with the
event probability sequenceis stored asthe signature of the activity.

Thetrajectoriesmay appear differently, but resembleat the event
level. In other words, though the state descriptions of the asso-
ciated HMMs are different, the activities have similarities in the
dominant transitions of the hidden states. For example, referring to
the“pick up” action infigure 1(a) and (c), the trajectoriesfor pick-
ing up an object from the desk looks different from that of the um-
brella, but the two activities resemble each other at the event level
(Figures 1(b) and (d)). In the close door activities in Figures 2(a)
and (c), we see that the two leading events correspond to the clos-
ing action, and the third event occurs because of some random mo-
tion of the hand. Our method is robust to such false alarmsin the
detected events.

Matchingthetest sequence: Givenanunknown (test) trajec-
tory, we compute the event probability sequence for every model
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Fig. 3. (a) showsthe hand trajectory as the action “pick up object”
isexecuted. (b)-(d) show aplot of event probability, as afunction
of time for the region of support, p = 3, 5, 7 respectively. Increas-
ing p innt (4, §) causes two events to merge, at the time when the
actual pick up action occurs.

in the database i.e., compute e (k,{) using HMM X, for g =
1,...,G, where G is the number of trajectories in the database.
The similarity score between the two event probability sequences
is computed using the dynamic time warping algorithm.

Table 1 summarizes the recognition results using cumulative
match scores (CMS) as the performance measure. CMS is com-
puted by accumulating recognition rates from rank 1 onwards. For
instance, aCMSof 90% at rank 5 meansthat on an average, within
the top 5 matches, the action is correctly recognized 90% of the
time. Thefirst two columnsarethe CMSscoresat rank 1 and 5 re-
spectively, obtained using the proposed method. We compare our
recognition rates with those in [6], whenever the experiments are
comparable.

Comparison with the UCF method[6]: Thedynamicinstants
defined in [6] can be considered to be a subset of the event proba-
bilitiese;. The eventsin e, do not require sharp curvaturesin the
trajectory unlikethedynamicinstants. Evenasinglemissedinstant
can cause an incorrect match in the dynamic instants method. For
instance, the action “pick up umbrellawhile twisting hand” is not
recognized as apick up actionin [6] because of excessive peaksin
curvature caused by thetwisting action. To makequantitative state-
mentsabout thetolerancelevel to the number of such missed events
inour method, weneed amoredetailed analysis. Further, collinear-
ity in thetragjectory isanissuein [6] and causes incorrect matches.
In our case, the changes in the direction of motion of the hand is
sufficient to produce the event probabilities. For similar reasons,
recognition using dynamic instants cannot deal with composite ac-
tivities that have subactivities.

Choiceof p: The effect of increasing the region of support p
depends on the extent of variation of thetrajectory. If the variation
in the trajectory itself is less, then we can expect strengthening of
those eventsthat areless dominant at lower valuesof p. Thisisbe-
cause of the regularity at the observation level that is preserved at
the state level (see Figure 3). On the other hand, if the motion tra-
jectory has significant fluctuations, then this tends to get reflected
to alarge extent in the state sequence aswell. Increasing the value
of p will therefore cause some of the events that were less signifi-
cant initially, to gradually disappear. At the same time, the domi-
nant event may bereinforced. In other words, the number of events
detected is tied to the choice of p.

5.2. Anomaloustrajectory detection

TheTSA dataset consistsof surveillance video capturedin an air-
port. A part of it containsimagesof passengersdeplaning and walk-
ing across the tarmac to the terminal gate. The sceneis 320 x 240
pixelswide, and the people are about 10 — 15 pixelstall. (see Fig-



Table 1. Cumulative match score (CMS) percentages for activity
recognition at rank 1 (recognition rate) and rank 5. Recognition
ratesin column 2 for proposed method is compared with those re-
ported in [6] in column 4)

UCF results

Expt. set CMSrank1 | CMSrank 5 | CMSrank 1
Open door 72 94 50

Pick up 70 95 -

Put down 72 94 -
Close door 80 100 53
Erase board 50 100 75
Pour water 33 100 33

Pick up
and put down 67 100 56
Overall 65 95 61
T
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Fig. 4. (a) Snapshot of TSA dataset (b) Simulated anomaly - person
walks away from the virtual path and rejoins path

ured). Trackingisdifficult and error-prone. The 5 best trajectories
of peoplewalking (out of 11) are chosen asthe normal trajectories.
Since we do not have any instances of anomalous trajectories, we
simulate one by considering deviation from the path as an anomaly
(Figure 4(b)).

Using the set of normal trajectories, a5 —stateHMM istrained,
assuming aleft-to-right model. From our experiments, we observe
that the choice of the number of statesisnot critical. For each of the
normal trajectories, the event probability sequenceiscomputed. Fig-
ures 5 (a) and (b) show two such sequences. Given anew (anoma-
lous) trajectory, we use the HMM in the database to compute the
event probabilities. If the anomaly is present in a part of the trajec-
tory and resumes the normal activity after sometime, then thisis
reflected in the events detected. The method does not accumulate
errorsat al timeinstants, but only based on the times when events
occur or when an event was expected to occur as seenin the train-
ing data.

To declarethe presence of an anomaly, we use both the number
of events detected (spurious and missing events are both anoma-
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Fig. 5. (a) and (b) show theevent probability sequencefor two nor-
mal trajectories. (c) shows the eventsfor an anomal ous trajectory.

lies) aswell the location of the detected events. Figure 5 (c) shows
the event probability sequence for a person who deviates from the
normal path and later rejoins the virtual path. We observe that the
latter two dominant peaksin (c) resemblethelatter half of the nor-
mal event sequence, whereas amissing event in the first half indi-
cates an anomaly.

6. CONCLUSION

We have presented a technique to represent activity trajectoriesus-
ing ‘event probabilities’, using an HMM framework. The motiva-
tion for this approach was the need for asemantically viable repre-
sentation rather than a purely statistical one. These events capture
the essence of the activity, and provide away of focussing our at-
tention on the salient portions of the trajectory, rather than using
the entire tragjectory for recognition and for other tasks. We have
demonstrated the application of such eventsto activity recognition
and anomaly detection. A more complete evaluation of the pro-
posed method requiresalarger dataset. We al so need away of quan-
tifying thedi scriminating capacity of the event probability sequence,
perhapsthrough the use of the number of bits required to represent
the events associated with the different activities.

One of the drawbacks of using the motion trajectories as the
feature isthat appearance and other information is lost. Instead of
using the centroid of the moving object, amore descriptive feature
vector is the time variation of a bounding box around the moving
object. Presently, an event probability is based on a simple step
edge with a certain support region. For example, state sequence
Q = {2,2,2,1,1,1} is an event with support p = 2. We cat-
egorize events based on the two states involved in the transition,
theregion of support and the probability of thetransition. Thiscan
be modified to include more complex patterns so that the events of
various types can be detected; for example, an event of the type
Q = {2,1,2,1,2,1}. A moreinteresting problem is discovering
such event patterns given multiple observations of an activity.
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