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ABSTRACT

We propose a method for activity representation based on seman-
tic events, using the HMM framework. For every time instant, the
probability of event occurrence is computed by exploring a subset
of state sequences. The idea is that while activity trajectories may
have large variations at the data or the state levels, they may ex-
hibit similarities at the event level. Our experiments show the ap-
plication of these events to activity recognition in an office envi-
ronment and to anomalous trajectory detection using surveillance
video data.

1. INTRODUCTION

Activity modeling has several applications includiing activity recog-
nition, object classification, segmentation, video indexing etc. Ap-
proaches using statistical models, temporal templates among others
have been proposed to represent repetitive activities such as walk-
ing, running, gestures etc. [1], [2]. Not all activities can be rep-
resented using direct statistical models due to large data variabil-
ity and semantic ambiguity [3], i.e., multiple samples correspond-
ing to the same activity may have drastically varying appearances.
In such cases, activities may be regarded as a sequence of certain
events that are semantically significant. We propose an automatic
event detection method using the HMM for activity recognition and
anomalous trajectory detection.

We illustrate the use of events in activity representation through
the following example. Consider the activity of picking up an ob-
ject. Picking up a pen lying on the desk and picking up a book
from the cabinet may create dissimilar trajectories though the act of
picking up closely resemble each other in the two cases. Only the
few frames when the object is picked up is relevant to the recogni-
tion task. Similarly, in a surveillance scenario in an airport where
people deplane and walk toward the gate, one may be interested in
knowing whether the people follow a normal path. The exact tra-
jectories of the people may not be important, and certain key frames
in the video sequence may be sufficient to characterize the activity.

The HMM has become a popular tool in many recognition tasks
including speech, gesture, action etc. owing to its powerful repre-
sentation and tractability. However, a direct application of HMM
is not feasible as we have already mentioned. Further, the optimal
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state sequence of the HMM is used to evaluate the likelihood with-
out requiring a physical interpretation. We explore a subset of state
sequences that identifies events by analyzing certain transitions in
the hidden state. An event is defined as the maximum over all pos-
sible transitions between two distinct hidden states such that the
past and future states each have a support of � frames of observa-
tion vectors. The event probability sequence is used to compare
two activities.

2. EVENT DETECTION USING HMM

Before describing the event probability sequence, we review the
basic HMM notation. Detailed explanation of the HMM may be
found in several sources including [4].

� Let �������
	���
�
�
�������� represent the observation symbol
sequence of length � .

� Let ��������	���
�
�
�������� be the (hidden) state sequence with
���������
��
�
�
�� �!� , where � is the number of states.

�#" ��$&%(' )�*,+.-(+ is the state transition matrix whose elements
%(' )/�10.23� � �5476�� �98 	:�<;9= are transition probabilities.

�?> )(23� � =@�A0.23� � 6
� � �B47= is the observation symbol proba-
bility.

� Initial probability of states is given by CD�E$ F 	 ��
�
�
�� F + * .
The model parameters are estimated such that 0.23�@6
GH= is max-

imized using either the max of the propabilities over all possible
state sequences � , or by summing over all possible � .

� The Viterbi algorithm computes the likelihood for the opti-
mal state sequence using 0.23�@6�GH=I�DJLK�MHNO0.23�.� �@6�GP= .

� The likelihood by summing over all possible state sequences
is given by 0.23�@6�GP=��<Q N 0.23�.���@6�GH=

The variables used in estimating the model parameters are

Forward variable RS�T23;U= �10.23���S�1;T�WV �	 6�GH=
Backward variable X � 2Y47=Z�10.2UV ��\[ 	 6
� � �54���GH=

Probability of passing through state ; at time ] and state 4 at ]_^`�
conditioned on the data is given by a���23;T�T47=b�c0.23���:�A;T� ���Y[ 	 �
476��.� GH= .

The optimal state sequence is not driven by the events that oc-
cur during the activity, but by the likelihood of the observed data.
In this study, we explore a subset of these state sequences, which
are likely to highlight some events. The hypothesis is that events



can be extracted more easily by looking for certain changes in the
state sequence. Though the states themselves may look different
across samples of the same activity, certain transitions in the hid-
den states may be preserved. Such transitions represent events. An
activity may be described as a sequence of events.

The large variability in the trajectories associated with an ac-
tivity makes it difficult to describe the events directly from the ob-
served data. Further, rapid fluctuations due to events tend to be re-
flected in the state sequence as well, unless the HMM is broadly
tuned to mask the events. We propose a method to capture the events
from the sequences of hidden states. Define a variable d�e� 23;f�34(= ,� ���
��g(��
�
�
�� , which is similar to a��h23;T�T47= , as follows.

d 	� 23;f�h47=i� 0.23� �U8 	:��;T� � � �1;f��� �Y[ 	j�54
� � �Y[Hk �D4(6
�.� GH=
d e � 23;f�h47=i� 0.23���U8 e �1;T�����98 e [ 	 �1;T��
�
�
�� ���S�1;f�

� �\[ 	:�54
� � �Y[Hk �D4���
�
�
�� � �\[ e [ 	j�5476��.��GH= (1)
l e � 23mH� nY=o� JpK�M'3qr ) d e � 23;T�T47= (2)

where 23mH� nY=b�cK�sht�JpK�Mu'Tqr )vd e � 23;T�T47= . The quantity l e � 23mH� nY= repre-
sents the event probability at time ] . A large value of l e � 23mH� nY= indi-
cates the presence of an event. The nature of the event is specified
by 23mH� nY= and the strength of the event by the probability value.

d 	� 23;f�34(=o� 0.23� �U8 	:�1;T� � � �<;f��� �Y[ 	:�w4
� � �Y[Hk �54
� �@6�GH=
0.23�@6�GH=

� RS�98 	 23;U=h% 'x' > ' 23�
�9=h% ' ) > ) 23���\[ 	 =h% )T) > ) 23�
�Y[Hk�=TXy�Y[Hk�2Y47=
0.23�@6
GH=

Similarly, for �{z � ,

d e � 23;T�T47=|� RS�U8 e 23;U=h% e 'x'
> ' 23���U8 e [ 	 =
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The choice of � determines the relative strength of the domi-
nant and spurious peaks (events) in l � .

3. RECOGNIZING ACTIVITIES USING EVENT
PROBABILITY SEQUENCE

In this section, we will outline our approach to activity recognition
based on the event probability sequence l � . From the video data,
the motion trajectory of the object is extracted and smoothed out.
Using the Baum-Welch algorithm, the parameters of the HMM are
computed from trajectories of an activity[4]. Two activities that are
the same in the semantic sense but differ in context are used to train
two separate models. Similarly, trajectories of an activity that are
captured from different viewpoints are used to train separate mod-
els. Thus, the trajectories corresponding to picking up a pen from
the desk and picking up a book from the cabinet will have two dif-
ferent models, while two instances of picking up a pen lying on the
table, without changing the viewpoint will be used as multiple ob-
servations to train an HMM.

We compute d
� in (1) and the event probability sequence l �
in (2), using the trained HMM for all the training data. The event
probability sequence forms the signature for the trajectory. Activi-
ties that are similar but appear differently will resemble at the event
probability level, even though the state descriptions may be differ-
ent. Events are thus abstractions of the hidden states, which are
themselves abstractions of the observed data.

Given a test trajectory belonging to an activity, we compute the
event probability sequences for each of the distinct HMMs avail-
able in the gallery. The event probability sequence for each HMM
is compared with each of the event probability sequences of the tra-
jectories of the training data corresponding to this HMM. If there
are a total of � trajectories in the training data set for all the activ-
ities (HMMs), then there will be � matching scores for each test
trajectory. The matching score for comparing two event probability
sequences is obtained using dynamic time warping algorithm [5].

For a better understanding of the role of the event probabili-
ties in activity representation, suppose that the segmental k-means
algorithm is used in training. Roughly speaking, the motion trajec-
tory is segmented into different states. Consider a fictitious trajec-
tory obtained by drawing a horizontal line in air. This can be done
by moving the hand from left to right, or from right to left. Since the
appearance of the two trajectories differs significantly, we cannot
use an HMM to represent the activity directly. On the other hand,
using event probabilities in both the cases, we ge, � maxima along
the event probability sequences as the trajectory transits from one
segment to the next.

Ivanov and Bobick [3] split the recognition task into two steps
- they segment the activity using HMMs that are tuned to some
parts of the activity, and then use stochastic context-free grammar
to parse the activity. Our method computes the events within the
HMM framework. Also, a vocabulary of activities is not required
in our method. Rao et al. [6] represent actions using dynamic in-
stants, which are points of maximum curvature along the trajectory.
We will discuss the relation of the dynamic instants to our method
in Section 5.

4. DETECTING ANOMALOUS TRAJECTORY

In this section, we will outline our approach to anomaly detection
based on the event probability sequence l � . In a surveillance sce-
nario, one of the tasks is to automatically check whether an activ-
ity is occuring along expected lines. It is common to have several
instances of the normal activity, and very few samples of an un-
expected case, which makes it hard to model the unusual activity.
Some approaches like [7] use a model to describe the usual activity,
while [8] proposes an unsupervised scheme to compare two activ-
ities, and detect an unusual case based on the the extent of similar-
ity. We use HMMs along with the event probability sequences to
represent the normal activity. We compare trajectories at the event
probability level to check for anomalous behavior.

For a particular activity, we use multiple observations of the
normal activity to train an HMM. For each of the normal trajecto-
ries in the database, we compute the variable d � 23;T�T47= as defined in
(1) and the event probabilitiy sequence l � defined in (2). Given a
new trajectory �@�
�h� , we compute its associated event probability
sequence l � 23mH� nY=:�EJpK�MP'3qr )v0.23� �U8 e �c;T� � �98 e [ 	���;f��
�
�
���� � �
;T� � �Y[ 	#��4
�f� �Y[Hk ��4
��
�
�
�� � �Y[ e [ 	?��476��j���3��� GH�
= , where GH�
is the HMM associated with the normal activity, and 23mH� nY= is the
maximizing argument 23;T�h4(= . We compare this event probability se-
quence with the set of events in the database. An anomaly is said
to be present in that part of the trajectory where either an event did
not occur as expected or if an unexpected event occured.

5. EXPERIMENTS

We demonstrate our activity represention method using two datasets
- the UCF dataset and the TSA dataset.
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(a) (b) (c) (d)

Fig. 1. (a) �~� , � coordinates of hand trajectories for “pick up ob-
ject from desk”, (b) corresponding event probability. (c) shows
the trajectory of “pick up umbrella from cabinet” and (d), its event
probability sequence. Both (b) and (d) have two dominant events.
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Fig. 2. Trajectories are shown in the top row and the corresponding
event probability sequences in the bottom row. (a) and (b): Two
instances of “open door”; (c) and (d):”Close door”

5.1. Activity Recognition

The UCF dataset consists of ��� trajectories of common activi-
ties, and are described in [6]. We divide the list of activities into�

main categories: open door, pick up, put down, close door,erase
board, pour water into cup and pick up object and put down else-
where. The hand is tracked as it performs the different activities
and the resulting trajectory is smoothed out using anisotropic dif-
fusion. Figures 1 and 2 show some examples of the hand trajectory
executing different activities. Typically, most of the activities in the
dataset last for a few seconds i.e., of the order of ����� frames. The
number of events in an activity ranges from � to � . At the matching
stage, only these events are compared.

Finding events in the training data: The Baum Welch al-
gorithm is used to estimate the parameters of the HMM. In our ex-
periments, we use a � state, single Gaussian, left-to-right model.
Using the parameters of the trained HMM, we compute the d e � andl � for different values of � as defined in (1) and (2). In our recogni-
tion experiments, � was set to � . The HMM model along with the
event probability sequence is stored as the signature of the activity.

The trajectories may appear differently, but resemble at the event
level. In other words, though the state descriptions of the asso-
ciated HMMs are different, the activities have similarities in the
dominant transitions of the hidden states. For example, referring to
the “pick up” action in figure 1(a) and (c), the trajectories for pick-
ing up an object from the desk looks different from that of the um-
brella, but the two activities resemble each other at the event level
(Figures 1(b) and (d)). In the close door activities in Figures 2(a)
and (c), we see that the two leading events correspond to the clos-
ing action, and the third event occurs because of some random mo-
tion of the hand. Our method is robust to such false alarms in the
detected events.

Matching the test sequence: Given an unknown (test) trajec-
tory, we compute the event probability sequence for every model
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Fig. 3. (a) shows the hand trajectory as the action “pick up object”
is executed. (b)-(d) show a plot of event probability, as a function
of time for the region of support, � ���(� ��� � respectively. Increas-
ing � in d��� 23;T�T47= causes two events to merge, at the time when the
actual pick up action occurs.

in the database i.e., compute l e
� �� 23mH� nY= using HMM GH� for ���
����
�
�
�� � , where � is the number of trajectories in the database.
The similarity score between the two event probability sequences
is computed using the dynamic time warping algorithm.

Table 1 summarizes the recognition results using cumulative
match scores (CMS) as the performance measure. CMS is com-
puted by accumulating recognition rates from rank � onwards. For
instance, a CMS of �
��� at rank � means that on an average, within
the top � matches, the action is correctly recognized �
��� of the
time. The first two columns are the CMS scores at rank � and � re-
spectively, obtained using the proposed method. We compare our
recognition rates with those in [6], whenever the experiments are
comparable.

Comparison with the UCF method[6]: The dynamic instants
defined in [6] can be considered to be a subset of the event proba-
bilities l � . The events in l � do not require sharp curvatures in the
trajectory unlike the dynamic instants. Even a single missed instant
can cause an incorrect match in the dynamic instants method. For
instance, the action “pick up umbrella while twisting hand” is not
recognized as a pick up action in [6] because of excessive peaks in
curvature caused by the twisting action. To make quantitative state-
ments about the tolerance level to the number of such missed events
in our method, we need a more detailed analysis. Further, collinear-
ity in the trajectory is an issue in [6] and causes incorrect matches.
In our case, the changes in the direction of motion of the hand is
sufficient to produce the event probabilities. For similar reasons,
recognition using dynamic instants cannot deal with composite ac-
tivities that have subactivities.

Choice of � : The effect of increasing the region of support �
depends on the extent of variation of the trajectory. If the variation
in the trajectory itself is less, then we can expect strengthening of
those events that are less dominant at lower values of � . This is be-
cause of the regularity at the observation level that is preserved at
the state level (see Figure 3). On the other hand, if the motion tra-
jectory has significant fluctuations, then this tends to get reflected
to a large extent in the state sequence as well. Increasing the value
of � will therefore cause some of the events that were less signifi-
cant initially, to gradually disappear. At the same time, the domi-
nant event may be reinforced. In other words, the number of events
detected is tied to the choice of � .

5.2. Anomalous trajectory detection

The TSA dataset consists of surveillance video captured in an air-
port. A part of it contains images of passengers deplaning and walk-
ing across the tarmac to the terminal gate. The scene is �
g�� � g��(�
pixels wide, and the people are about ��������� pixels tall. (see Fig-



Table 1. Cumulative match score (CMS) percentages for activity
recognition at rank � (recognition rate) and rank � . Recognition
rates in column g for proposed method is compared with those re-
ported in [6] in column � )

UCF results
Expt. set CMS rank � CMS rank � CMS rank �

Open door 72 94 50
Pick up 70 95 -

Put down 72 94 -
Close door 80 100 53
Erase board 50 100 75
Pour water 33 100 33

Pick up
and put down 67 100 56

Overall 65 95 61

(a) (b)

Fig. 4. (a) Snapshot of TSA dataset (b) Simulated anomaly - person
walks away from the virtual path and rejoins path

ure 4). Tracking is difficult and error-prone. The � best trajectories
of people walking (out of ��� ) are chosen as the normal trajectories.
Since we do not have any instances of anomalous trajectories, we
simulate one by considering deviation from the path as an anomaly
(Figure 4(b)).

Using the set of normal trajectories, a �(� state HMM is trained,
assuming a left-to-right model. From our experiments, we observe
that the choice of the number of states is not critical. For each of the
normal trajectories, the event probability sequence is computed. Fig-
ures 5 (a) and (b) show two such sequences. Given a new (anoma-
lous) trajectory, we use the HMM in the database to compute the
event probabilities. If the anomaly is present in a part of the trajec-
tory and resumes the normal activity after sometime, then this is
reflected in the events detected. The method does not accumulate
errors at all time instants, but only based on the times when events
occur or when an event was expected to occur as seen in the train-
ing data.

To declare the presence of an anomaly, we use both the number
of events detected (spurious and missing events are both anoma-
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(a) (b) (c)

Fig. 5. (a) and (b) show the event probability sequence for two nor-
mal trajectories. (c) shows the events for an anomalous trajectory.

lies) as well the location of the detected events. Figure 5 (c) shows
the event probability sequence for a person who deviates from the
normal path and later rejoins the virtual path. We observe that the
latter two dominant peaks in (c) resemble the latter half of the nor-
mal event sequence, whereas a missing event in the first half indi-
cates an anomaly.

6. CONCLUSION

We have presented a technique to represent activity trajectories us-
ing ‘event probabilities’, using an HMM framework. The motiva-
tion for this approach was the need for a semantically viable repre-
sentation rather than a purely statistical one. These events capture
the essence of the activity, and provide a way of focussing our at-
tention on the salient portions of the trajectory, rather than using
the entire trajectory for recognition and for other tasks. We have
demonstrated the application of such events to activity recognition
and anomaly detection. A more complete evaluation of the pro-
posed method requires a larger dataset. We also need a way of quan-
tifying the discriminating capacity of the event probability sequence,
perhaps through the use of the number of bits required to represent
the events associated with the different activities.

One of the drawbacks of using the motion trajectories as the
feature is that appearance and other information is lost. Instead of
using the centroid of the moving object, a more descriptive feature
vector is the time variation of a bounding box around the moving
object. Presently, an event probability is based on a simple step
edge with a certain support region. For example, state sequence
������g(� g���g��������
����� is an event with support � ��g . We cat-
egorize events based on the two states involved in the transition,
the region of support and the probability of the transition. This can
be modified to include more complex patterns so that the events of
various types can be detected; for example, an event of the type
������g(������g(����� g(����� . A more interesting problem is discovering
such event patterns given multiple observations of an activity.
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