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ABSTRACT indicated that the feature extraction stage of the algorithm

Security and robustness are two important requirements forMust be key dependent for the hash to be secure [4]. The
image hash functions. In this paper, we introduce “differen- authors have argued that if the feature extraction stag.e is
tial entropy” as a metric to quantify the amount of random- not secure, then the output of this stage would b_e publicly

ness in image hash functions and to study their security. weknown and therefore an attacker can forge a new image that
present a mathematical framework and derive expressiongvould give rise to the same features thus defeating the pur-
for the proposed security metric for various common image P0ose of hashing.

hashing schemes. Using the proposed security metric, we N the present work, we will show that the “differential

discuss the trade-offs between the security and robustnes§ntropy” can be used as a metric to evaluate the security
in image hashing. of the feature extraction stage. We present an evaluation

framework and do an information theoretical analysis to ob-

tain the differential entropy of various existing schemes. We

then present comparison studies and discuss the trade-offs
. between the security and robustness for these schemes.

1. INTRODUCTION

In the modern era, there is a widespread availability of mu
timedia data in the digital form. This has led to a tremen-

dous growth of tools to manipulate digital data. To ensure 2. SECURITY ANALYSIS
trustworthiness, content based image authentication tech-

niques like image hashing have been proposed. A hashThere are a number of image hashing schemes presented in
function is a short digital signature of the data [1]. Image the literature. Each of them introduces security in the fea-
hashing has been used in authentication, content based imtyre extraction stage in a unique way. For instance, both
age retrieval (CBIR) and image/video watermarking [2, 3]. Venkatesan's scheme [3] and Mihcak's scheme [7] intro-
For the applications listed above, it is often necessary duce security by the choice of random rectangles from which
that the image hash function be robust and secure. By ro-features are generated; Fridrich et al. introduce security by
bustness, we mean that the hash function should be I’esilienprojecting the image onto random low-pass images [4]; and
to a set of content preserving manipulations such as fil-in our recent work [5], we introduce randomness by per-
tering; geometric and other affine transformations; addi- forming a weighted summation of the discrete polar Fourier
tive noise; compression; and luminance non-linearities. Thetransform over random subsets.
hash should also depend on the secret key for applications To our best knowledge, there is no metric to compare
involving authentication and image/video watermarking. Furthe degree of security of image hash functions. The only
thermore, the hash should not be easily forged or estimatedrelevant work to characterize security is by Radhakrishnan
without the knowledge of the key. _ et al. [8]. In their work, the authors show that the Visual
Traditionally, the cryptographic hash functions have beenHash Function (VHF) [4] is not secure and one can create
used in applications involving verification of data integrity -another visually dissimilar image that would give the same
and data retrieval. Although they are very secure, these hasash values. However, their analysis is specific to the VHF
functions are not robust as they are very sensitive to everyand cannot be easily extended to characterize the degree of
bit of the image data. This is undesirable and inconsistentsecurity of other commonly used hash functions.
with human visugl perception [3]. As a result, various ro- In our analysis, we use the differential entropy) @s
bust image hashing schemes have been proposed [3, 4, Sk metric to characterize the amount of randomness in hash
Many of them follow a three-step framework to attain ro- vajues. The higher the differential entropy of the hash value,
bustness. This involves extraction of certain invariant fea- the higher the randomness and the larger the number of ex-
tures from the imageFeature Extractioly quantizing and  haustive searches required to forge the hash vial(vehich
compressing them [3, 6]. To secure the hash, the key canjs proportional toa®"") for somea > 1). The schemes
be employed in any of the three stages. Fridrich et al. havethat do not have any random components in the feature ex-
The authors can be contacted via emgshwins, ymao, minw traction stage have differential entropy-eto by definition
@eng.umd.edu. and the number of exhaustive searches required to forge the




hash is 0 as expected. 2.2. Security Analysis of Scheme B

In the subsequent analysis, we model the output of theI Fridrich’s sch iformlv distributed random i
feature extraction stage as random variables and find its de- FrIATiCN's scheme, unitormly distributed random Images
(X)) are generated using a secret key [4]. The resulting

gree of uncertainty in terms of differential entropy. We d . th dall d with
study three existing hashing schemes, namely, (A) Random &'d0m Images are then spatially averaged with & n

Discrete Polar FFT based scheme [5], (B) Fridrich's VHF [4] filter {c;;}. The outp:lt of th(i filtering operatiari”) is

and (C) Venkatesan'’s robust image hashing [3]. In the anal- ) L= L2) )

ysis, we assume that the attacker has complete information Y = Z Z i Xk gy ®)

about the image and the hashing algorithm used but not the i=—|%]i=—1%]

key used in the generation of the hash. The imagd is then projected on the N-randomly smooth
patterns{Y ("), r = 1,2,..., N'} to obtain an intermediate

2.1. Security Analysis of Scheme A hash valué:,.. These intermediate values are then quantized

, . . to generate the final hash. It can be shown that
The first scheme we analyze is the hashing scheme-2 pre- g =] N
2 2

sented in [5]. In this scheme, the FFT of the image is first H W () )
obtained and converted to i ' hy = ZY T = Z Z aijVij s
polar coordinates to okitgjn 0). kl . 4 3 Vij

This is sampled along the-axis and thef-axis to obtain k=11=1 i==lzli=-13]
I (pi,W) (wherel <i < Nand0 < j < K — 1). H W

. L () (r)
A weighted summation is performed along a random subset where V' = Z Z Xtk At
of the discretizeg-axis to form thek'" hash valué,. The k=11=1

weights of the summation are Gaussian distributed random e note that” is a weighted sum ofV x H uni-
variables{ ;. } with meany and variances>. The hash "

L. . (r) . .
values can be exprel%sed as formly distributed random variablgsy;; " } with the weights

determined by the image pixel valugs. We can therefore

he = ) NiBirdp, Where (1) assume thdtfi(f) are Gaussian distributed. We also note that
;ill the variables]/i([) are highly correlated and
(2j+Dm ‘ H W

Qi = I (Pm ], @) e 1

. JZ:;J K E(Vig- )Va(b)) = 13 szklfi+k—a,j+l—b
and)\,; are Bernoulli distributed random variables. k_; l_Ml/ 5

To find the differential entropt(hy,), we first try to ob- 1 7 ©)

tain the probability density function (PDFj,, (z) of the T {3 ;; kit

random variablegi,. A detailed analysis of the system
reveals that the PDF has rather a complex form and con-  gincep, is a sum of Gaussian distributed variabhe ),
tains2" terms. Thus, obtaining(hy) from the PDFisim- it would also be Gaussian. Therefore, we compute the dif-
practical. We instead analyze the system to find the lowerfgrential entropy of:,. from its variance.

and the upper bounds. Without loss of generality, we as-

sume thatp; < p2 < ... < py and therefore by the en-

. . H W
ergy compaction property of the Fourier transform we have 1 1 (aa)
dpy = Gpy = --- 2> (,y fOr most natural images. We ad- R(hy) = 2 log, | 2me 12 Z;Z;Im]m ™
ditionally use the fact that the entropy is a concave function PR
to obtain tr)ve lower bound N wherel(@®) s obtained by filtering the imagktwice with
2% —1 1 N . i iy
N(hg) > SNFT log,(2me 02q§N) + oN (1) log, () the filter {cv; }.

=1
() 2.3. Security Analysis of Scheme C

To derive the upper bound, we note that of all distribu- _ i )
tions with the same variance the Gaussian has the maximuni Nis scheme first takes a 3-level DWT of the image. A ran-

differential entropy. Therefore, we find the variance of the d0m tiling of each subband of the DWT of the image is gen-
hash valuesy;, and obtain the upper bound ot{h;) us- erated. The mean (or the variance) of the pixel values in the

ing the differential entropy of the Gaussian distribution as random rectangle isusedto form.the feature vector [3]. This
follows feature vector is randomly quantized and compressed.

We present a slightly modified approach to analyze the

1 o2 m*) v ity of this scheme by taking on the attackers’ view-
R(he) < =1 9 o, m 2| (4 security of this scheme by taking on the attackers’ view
(he) < 9 082 <( me) < 2 4 ) ;qm> @) point. We shall show that the locations and sizes of the
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Fig. 1. The plot of the PDF ofV;-the number of blocks in  Fig. 2. The plot of actual, estimated and error in estima-
it" row. Parameters,,;, = 10, Wpma = 40 andW = 512 tion of the image statistics vector for the Lena image with
Winin = 10, War = 40 andW = 512

exact random partitions are not required to forge the hash. Differential entropy of Scheme C
The attacker can instead make an intelligent guess of im- At
age statistics based on his/her knowledge of the image and 2f //
by replacing the random partitions with uniformly spaced,
equal sized partitions. If the attacker is correct in estimating
the number of partitionév; in each row and the number of
rows M, then he/she can get a good estimate of the hash
vector.

As a first step of the analysis, we derive a modelfgr Masrimum block size (w,,
and M by modelling the block partitioning algorithm. The
block partitioning algorithm can be approximated as a com- Fig. 3. The entropy of the Venkatesan's scheme plotted for
bination of two 1-D problems - partitioning along the hor- different input values ofv,,q; andwy,i,. W = H = 512,
izontal direction and then along the vertical direction. To ... = h,.;, aNdwmae = Fomas-
partition along the width of the image, we generate random
numbers U, } uniformly distributed iNw,, iy, Wia.] Where
Wynin aNdw,,. are the minimum and the maximum widths
of the random block. The location of th€”" partition is
then given by a set of random variablEs(Z,, = Y., U;)
We use a Gaussian approximation for the PDH# pto ob-
tain the PDF ofN;. A sample of the PDF oN; is shown in
Fig. 1. It can be shown that the maximum likelihood (ML)
estimate of the random variahlé; is the meaniuy;,)
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An alternate way to analyze the security of the scheme
is by considering the effects of the synchronization errors
introduced by a wrong estimate i¥; (andM). We repre-
sent the number of synchronization errors in & row
in the form ofY;, = > ,(N; — N.s). To obtain the
upper bound for the differential entropy, we construct the
MxM correlation matrix (R) usingz;; = E(Y?) = io%
andR;; = E(Y;Y;) = min(i, j)o% wheres?; is the vari-

oW ance ofV;. It can be shown thdt?| = o3 and therefore
Nest =mn; = o ———. (8) the differential entropy of the hash value is
Similarly, the ML estimate of the random variablé can R(he) = Lo (2me02) + —- 1o <1+ 1 )
be shown to be (hi) 2 Ba( N) Moy 22 120
(10)
2H We can see that the differential entropy of the scheme

Mest = himaz + hmin’ © heavily depends on the value of the varianée. At very

o . [OW wW,pq., We haves3, — 0 and thereforel(hy) — —oco

whereh,;,in, andh,,q, are the minimum and the maximum a5 shown in Fig. 3. This result is expected because when

heights of the random block. Wimaz @pproaches,,;,, there is no longer any randomness
Once the number of rows and columns are estimated, thei the choice of the window widths and hence the scheme

attacker can estimate the image statistics using uniform sizeyouid no longer be secure.

partitions of S|ze(N ) X (M ). We plot the actual hash

values, the estimated and the error in Fig. 2. Note that the2 4. Numerical Results and Comparison

error has a much lower dynamic range than the actual value.

The differential entropy{) of the scheme can be estimated We show in Fig. 4 the plot of the derived lower and the up-

using the error. For the Lena imag¥/.;) is around 5.74. per bounds of the entropy of ttecheme Avith the number
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Fig. 5. Robustness and Security trade-off for the Scheme A

Fig. 4. Entropy of the hash values for ti&heme Alotted (left) and B (right)

with respect to the number of sampling points N. Results for
Scheme Bs also shown for comparison

our recent work [5]. In this work, we discuss the trade-off

between security and robustness.
of sampling pointsV. To evaluate these bounds, we nu- For Scheme Awe observe from the lower and the upper
merically compute a PDF for the hash values and calculatepounds that as the variance of the random variapigs}
the true differential entropy of the PDF. Note that the upper js increased, the bounds on differential entropy (hence the
bound plotted using equation (4) is a very tight upper bound security) increase, while the robustness (in termggffor
and is almost equal to the calculated differential entropy. the samePr) decreases as shown in Fig. 5. Similar trend
This is because, the true PDF of the hash values is almOSban also be observed f&chemes B and.&or examp|e,
Gaussian with the same mean and variance as those used i Scheme Bit can be shown that as the order of the filter
the upper bound calculation. We observe that the differen-jncreases, the entropy decreases and robustness increases.
tial entropy ofScheme As greater than that dbcheme B Thjs is expected as increasing the order of the filter implies
This is a consequence of the filtering operationSaieme  more averaging and therefore less randomness and more ro-
B, which reduces the variance of the random variables andpstness.
hence its entropy. The differential entropy ®€heme Gs In summary, in this paper, we have introduced the dif-
lower than those oSchemes AndB (compare Fig. 3 and  ferential entropy as a metric to study the security in image
4). This is because, iBcheme Cthe image statistics can  hashing systems. We then formulate a method and derive
be estimated to reasonable accuracy without the knowledgesxplicit expressions for differential entropy for the feature
of the exact block partitions. However, in other SChemeS, extraction Stage of various existing schemes. We have pre-
the attackers need to guess some random variables used igented comparison studies and discussed the trade-offs be-
computing features;. in Scheme AY ") in Scheme 8 tween security and robustness for existing schemes.

Notice that we only consider the security of the feature
extraction stage in this work. While random permutation or
other techniques alike can be applied to almost all feature
extraction approaches to bring further randomness, the same " o iging: A Perceptual Audio Hashing AlgorithmProceedings of
type of post processing often enhances the overall security  4th Intl. Information Hiding WorkshqpPA, April 2001.
by about the same amount. This does not change the relativgz] J. Fridrich, “Visual Hash for Oblivious Watermarking?roc. of IS&T/
security results between the schemes obtained in this work,  SPIE’s 12th Sym. on Electronic Imagingpl. 3971, USA, Jan 2000.

and thus justifies our focus on the feature extraction stage. [3] R.Venkatesan, S. M. Koon, M. H. Jakubowski and P. Moulin, “Robust
Image Hashing,1EEE Proc. ICIP, Vol. 3, pp. 664 - 666, Sep 2000.

[4] J. Fridrich and M. Goljan, “Robust Hash functions for Digital Water-
marking,” IEEE Proc. Intl. Conf. on Information Technology: Coding
and Computingpp. 178 - 183, 27-29 March 2000.

A. Swaminathan, Y. Mao and M. Wu, “Image Hashing Resilient to
Geometric and Filtering OperationdEEE Workshop on Multimedia
Signal ProcessingSep 2004.
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