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ABSTRACT

In this paper, we present a novel decomposition for sinusoidal au-
dio coding using an amplitude modulation of sinusoids via a linear
combinations of arbitrary basis vectors. The proposed method,
which incorporate a perceptual distortion measure, is based on the
relaxation of a non-linear least squares minimization, and offers
benefits in the modeling of transients in audio signals. Further,
rate-distortion curves indicate that using a sinusoidal audio coder
with the proposed decomposition will be preferable to one without
it. This result is also confirmed by listening tests that indicate that,
for a given bitrate, significant improvements can be gained over a
typical sinusoidal coder.

1. INTRODUCTION

The problem of decomposing a signal into amplitude modulated
(AM) sinusoids is encountered in many different applications, for
example in parametric audio coding (see, e.g., [1]) where AM si-
nusoidal models are of interest for handling transients. Even when
dynamic time segmentation is employed, there is a need for effi-
cient coding of transients because of limitations on the minimum
segment length [2]. In [3], it was shown that perceptually sig-
nificant improvements can be achieved by applying AM in a fre-
quency dependent way as opposed to singleband AM (see, e.g.,
[4]). Furthermore, it was shown in [5] that it is indeed efficient
in terms of rate-distortion to apply AM on a per component basis.
Sinusoidal modeling using both amplitude and frequency modu-
lation, in the form of a linear combination of basis vectors such
as low-order polynomials, has been explored for a variety of ap-
plications (see, e.g., [6, 7]). Although such models perform well
for slowly evolving signals such as voiced speech, they can not
satisfactory handle the fast transients often encountered in audio
signals. In this paper, we extend the work in [3, 5] by investigating
the estimation of parameters for a preselected, linearly indepen-
dent, set of real-valued basis functions that describe the amplitude
modulating function. Furthermore, we examine how to incorpo-
rate such a decomposition in parametric audio coding, especially
noting that it is not always efficient in terms of rate and distortion
to use the AM technique. The rest of the paper is organized as fol-
lows: In Section 2, both the signal decomposition and the proposed
estimator are presented, followed in Section 3 with the incorpora-
tion of a perception-based weighting. Section 4 discuss sinusoidal
audio coding using the proposed AM decomposition. Experimen-
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tal results are presented in Section 5, and Section 6 contains our
conclusions.

2. PROPOSED DECOMPOSITION

In this paper, we model the signal of interest as a sum of amplitude
modulated sinusoids, i.e.,

x(n) =
L
X

l=1

γl(n) cos(ωln + φl), (1)

where ωl and φl denote the lth carrier frequency and phase, respec-
tively, and γl(n) is the lth amplitude modulating function formed
as

γl(n) =
I
X

i=1

b(n, i)ci,l (2)

where b(n, i) and ci,l denote ith basis function evaluated at time
instance n and the (i, l)th AM coefficient, respectively; it is as-
sumed that the L carrier frequencies are distinct, so that ωk 6= ωl

for k 6= l. Further, to ensure a compact representation, we assume
that IL < N , i.e., I < N and L < N , where N denotes the
data length. The additional flexibility in (1), as compared to tradi-
tional constant-amplitude models (CA), with γl(n) = Al, enables
improved modeling of transient segments. Thus, the CA model is
but a special case of the proposed AM model. Let xa(n) denote
the discrete-time “analytical” signal constructed from x(n) by re-
moving the negative frequency components, such that the resulting
signal may be downsampled by a factor two without loss of infor-
mation [8], assuming that there is little or no signal of interest near
0 and π. Then, xa(n) can be written as

xa(n) =
L
X

l=1

I
X

i=1

b(n, i)ci,le
jωln+jφl (3)

Without loss of generality, we assume N to be even, and introduc-
ing

xa =
ˆ

xa(1) xa(3) · · · xa(N − 1)
˜T

, (4)

where (·)T is the transpose operator, the downsampled discrete-
time “analytical” signal may be expressed as

xa = [(BC)� Z] a, (5)

where � denotes the Hadamard (elementwise) product, i.e., [E �
F]kl = [E]kl[F]kl, with [E]kl being the (k, l)th element of E.
Further, Z ∈ C

N/2×L is constructed from the L complex carri-
ers, i.e., [Z]kl = ejωl(2k−1), a =

ˆ

ejφ1 · · · ejφL
˜T

, and



the amplitude modulating function is written using the known AM
basis vectors, [B]kl = b(2k − 1, l), and the corresponding co-
efficients, [C]kl = ck,l. Here, B ∈ R

N/2×I and C ∈ R
I×L.

The problem of interest is given a measured signal, y(n), find an
estimate x(n) such that

min
C,{φk},{ωk}

N
X

n=1

|y(n)− x(n)|2 (6)

or, equivalently,

min
C,{φk},{ωk}

‖ya − xa‖
2
2 (7)

where ya is formed similar to xa, and ‖ · ‖2 denotes the 2-norm.
Typically, the nonlinear least squares (NLS) minimization in (7)
requires a multidimensional, often multimodal, minimization which
is typically computationally infeasible in most practical situations.
It is worth noting that for the sinusoidal estimation problem, sev-
eral suboptimal approaches based on relaxation of the original
problem have been suggested to reduce the computational com-
plexity of the minimization, such as the greedy matching pursuit
[9] or recursive methods as RELAX [10]. Herein, we propose an
iterative method for the minimization of (7) reminiscent to both the
above mentioned methods. The suggested method exploits the fact
that for given frequencies {ωk}

L
k=1, the minimization with respect

to C for fixed {φk}
L
k=1 is quadratic, and conversely the minimiza-

tion of {φk}
L
k=1 for fixed C. We propose to iteratively estimate

C and {φk}
L
k=1, minimizing the residual for each frequency in a

given finite set of frequencies, Ω. Let

ck =
ˆ

c1,k · · · cI,k

˜T
. (8)

At iteration k, assuming the k−1 carriers and corresponding coef-
ficients known (i.e., estimated in prior iterations), we find for each
frequency, ω ∈ Ω, the model parameters φk and ck minimizing
the residual for that particular frequency. The kth carrier is then
found as the parameter set minimizing the residual over Ω, i.e.,

ω̂k = arg min
ω∈Ω

‖rk −Dke
jφkBck‖

2
2, (9)

where Dk is the diagonal matrix constructed from the kth carrier,

Dk = diag
`ˆ

z1
k z3

k · · · zN−1
k

˜´

(10)

with zk = ejωk . Further,

rk =
ˆ

rk(1) rk(3) · · · rk(N − 1)
˜T

(11)

contains the kth residual, obtained as

rk(n) = ya(n)−
k
X

l=1

I
X

i=1

b(n, i)ĉi,le
jω̂ln+jφ̂l . (12)

For each frequency ω, we iteratively solve for φk and ck (with
superscript (p) denoting the pth iteration of the alternating mini-
mization); for given ĉ

(p−1)
k ,

φ̂
(p)
k = arg

8
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X
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. (13)

Given φ̂
(p)
k , the estimate of the AM coefficients reduces to

ĉ
(p)
k = B

+
u

(p)
k , (14)

with

B
+ =

“

B
T
B
”−1

B
T
, (15)

which can be pre-computed. Here, the vector u
(p)
k is defined as

u
(p)
k =

h

u
(p)
k (1) u

(p)
k (3) · · · u

(p)
k (N − 1)

iT

(16)

which is the real part (recall that ci,l ∈ R) of the residual shifted
towards DC by the carrier, i.e.,

u
(p)
k (n) = Re



rk(n)e−jωn−jφ̂
(p)
k

ff

. (17)

The estimates in (13) and (14) are then found alternately, given
the other, until some stopping criterion is reached. Experiments
indicate that the algorithm converges to a global maximum. We
note that for the special case of constant amplitude (DC) basis, the
estimates (9), (13) and (14) reduce to those of a matching pursuit
with complex sinusoids [9].

3. INCORPORATING PERCEPTUAL DISTORTION

As is well-known, the 2-norm error measure does not correlate
well with human sound perception; the problem of finding a suit-
able distortion measure is one of computational complexity and
mathematical convenience and tractability. On one hand, we de-
sire a measure that considers as much of the human auditory pro-
cessing as possible (such measure exist), while on the other, it is
preferable to have a measure which defines a mathematical norm
leading to efficient, simple, estimators and quantizers. Here, we
apply the perceptual distortion measure defined in [11]; for a par-
ticular segment, the distortion D can then be written as

D =

Z π

−π

A(ω) |F [w(n)e(n)]|2 dω, (18)

where F [·] denotes the Fourier transform, A(ω) ∈ {x ∈ R, x >
0} is a perceptual weighting function, w(n) is the analysis win-
dow, and e(n) = y(n) − x(n) is the modeling error. When
the weighting function is chosen as the reciprocal of the mask-
ing threshold, the resulting error spectrum will be shaped like the
masking threshold. This measure is inherently based on waveform
matching as it operates on the Fourier transform of the time do-
main error. As a result, for example pre-echos will be punished
by the measure; the actual distortion values for nonstationary seg-
ments, with respect to audibility, should be interpreted with care.
In practice, the integral in (18) is calculated as a summation of
point-wise multiplications in the frequency domain, correspond-
ing to a circular filtering in the time domain [12], i.e.,

D ≈ ‖HW(y − x)‖22 , (19)

where H is an circular Toeplitz matrix constructed from the im-
pulse response of the filter corresponding to A(ω) and W is a
diagonal weighting matrix containing the elements of the analy-
sis/synthesis window, e.g., a von Hann window; see [12] for fur-
ther details. Using this perceptual distortion allows us to minimize
(9) in a perceptually preferable way. However, doing so makes



the pseudo-inverse B+, defined in (15), both frequency and seg-
ment dependent, forcing it to be re-calculated for each frequency
and segment. Via extensive simulations and experiments, we have
found that using the perceptual distortion measure is much more
important in the frequency estimation in (9) than in the estima-
tion of the AM coefficients in (14) or in the phase estimation in
(13). Thus, in an effort to reduce complexity, we suggest that the
perceptual distortion weighting is only applied in (9).

4. AUDIO CODING USING THE AM DECOMPOSITION

Many audio segments are well-modeled using a CA sinusoidal
model, and applying the proposed AM decomposition is not al-
ways preferable from a rate and distortion perspective. Rather, to
enable efficient coding of both stationary and transient segments,
we propose the use of combined coder, containing both a CA sinu-
soidal coder and a coder based on the AM decomposition. Herein,
the AM decomposition has been incorporated into the experimen-
tal coder described in [5]; based on rate-distortion optimization,
it is determined in each segment whether a AM or CA sinusoidal
model should be used. We refer to such a combined coder as the
AM/CA coder, using the term CA coder for the pure CA-based
coder. The problem of rate-distortion optimiziation under rate con-
straint (i.e., finding the optimum distribution of R? bits over I seg-
ments) can be written as (see [13] for further details)

min

I
X

i=1

[Di + λRi] =

I
X

i=1

min [Di + λRi] , (20)

with λ ≥ 0, where the right side follows from the assumption
that the (nonnegative) distortions Di and rates Ri are independent
and additive over the ith segment, meaning that the cost function
can be minimized independently for each segment. For a finite,
discrete set of coding templates, Ti = {c1, . . . , cLca1, . . . , aLa}
with ck being

(Can the below be right?)
k constant amplitude sinusoids and ak being k amplitude mod-

ulated sinusoids for the ith segment with associated rates R(τ ) and
(perceptual) distortions D(τ ),

(or am I just not getting it? :-)
the rate-distortion optimization reduce to selecting the opti-

mum coding template as

τ
?
i = arg min

τ∈Ti

[D(τ ) + λ
?
R(τ )] , (21)

when the λ leading to the target bitrate R?, denoted λ?, has been
found. This is found by maximimizing the concave Lagrange dual
function:

λ
? = arg max

λ

 

I
X

i=1

min
τ∈Ti

[D(τ ) + λR(τ )]

!

− λR
?
. (22)

which is typically done by sweeping over a λ (using some fast
method exploiting the convexity of R(D)) until the rate R(λ) is
sufficiently close to the target bitrate. (Add reference!) The se-
lection between using an AM or CA sinusoidal model is decided
using the following criterion

min
k

[D(ak) + λ
?
R(ak)] < min

k
[D(ck) + λ

?
R(ck)] , (23)

implying that the AM coding templates ak are chosen when these
are the optimal choice among Ti for a particular segment. (I don’t
understand what you mean here)
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Fig. 1. AM bases.

5. EXPERIMENTAL RESULTS

5.1. Configuration

We have configured the AM/CA coder as follows; 50% overlap-
ping von Hann windows of length 30 ms were used for both analy-
sis and overlap-add synthesis. Further, the sinusoidal phases were
quantized uniformly using 5 bits/component, whereas both the am-
plitudes and the frequencies were quantized using a logarithmic
scale, with the amplitude quanitzer also used to quantize the AM
coefficients, using the AM bases shown in Figure 1. As entropy
(lossless) coding of the quantization indices are commonly used in
audio coding, the rates are estimated as the entropies of the quan-
tization indices, yielding approximately 9 bits/component for the
frequencies and 6 bits/component for the amplitudes1. The quan-
tizers were found to produce perceptually transparent results when
compared to un-quantized signals.

(Don’t like the below sentence!)
The rates of the coding templates of the rate-distortion opti-

mization are estimated mean-rates of CA and AM sinusoids, being
approximately 20 and 30 bits/component, respectively, with the
distortions found using (18).

5.2. Informal Evaluation

Informal listening tests indicate that the AM/CA results in high
perceived quality of coded excerpts for both stationary and tran-
sient parts. Generally, the type of signals that benefit from AM
codings are signals exhibiting sharp onsets and stops, percussive
sounds and changing signal types, such as transitions from un-
voiced to voiced in speech signals. Often the improvements are
perceived as an increase in bandwidth of the decoded signal. An il-
lustrative way of showing the improved coding is by observing the
rate-distortion tradeoffs; Figure 2 show the rate-distortion curves
(or more correctly the distortion-rate) of a typical CA coder with
and without the proposed AM subcoder. These curves were found
by sweeping over λ in (20), finding the associated optimal rate
and distortion pairs. As can be seen from the figure, there is a sig-
nificant improvement in the rate-distortion tradeoff resulting from
the proposed decomposition. It can also be seen that both curves
saturates at higher rates. (Add explanation?)

1We note that these rates can be reduced significantly by differential
encoding [14].
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Results of Listening Tests

Preference [%]
Excerpt AM/CA CA Significant

Glockenspiel Yes
Castanets Yes

Bass Guitar Yes
English Female Yes

Total Yes

Table 1. Results of AB-preference tests.

5.3. Listening Test

An AB preference test was carried out using 7 different excerpts
and 8 experienced listeners. The listeners were asked to choose
between the CA coder and the AM/CA coder, both operating at a
bitrate of approximately 30 kpbs. Each experiment was repeated
4 times in a balanced way such that each subject performed a total
of 56 comparisons. The results are shown in Table 1. Significance
was determined using a one-sided test with a level of significance
of 0.05. The rate-distortion optimization was done such that the
total entropy of the quantized parameters (including the envelopes)
of the AM/CA coder was lower than of the CA coder. The tests
clearly show that performance can indeed be improved using the
proposed AM/CA coder for low bitrate audio coding.

6. CONCLUSION

In this paper, we have proposed a linear decomposition technique
for amplitude modulated sinusoidal signals, showing that such a
method might be used for high quality audio coding. Experiments
indicate that a significantly higher rate of convergence, in terms
of rate-distortion, can be achieved for transient segments when in-
corporating the proposed the method in a combined coder. This is
also confirmed by listening tests, showing that, for a given bitrate,
significant improvements are gained for the coder using the pro-
posed decomposition. These results are promising for applications

of amplitude modulation in low bitrate audio coding.
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