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ABSTRACT

This paper considers adaptive transmission systems with imper-

fect feedback channels. It is shown that if the average SNR for

the forward channel is known to the transmitter, the feedback de-
tection can be modeled as a classical multiple hypotheses testing

problem. Though maximum a posteriori detection is optimal com-

pared to maximum likelihood (in the sense of minimum probabil-

ity of error) from a feedback communication link viewpoint, the
overall effect on adaptive system performance shows that ML de-

tection could be better in the high SNR range. The MAP scheme

is generalized to Bayesian detection by defining a cost function

matrix, which assigns (unequal) weights to the feedback decision
error probabilities. The result is close to ideal bit error rate (BER)

performance with only a small drop in spectral efficiency.

1. INTRODUCTION

It is generally assumed in closed loop adaptive transmission sys-
tems that the feedback channel is perfect. This is justified by al-

lowing for low-rate error-control coding to ensure feedback reli-

ability [1–3]. However, in wireless communications, feedback is

subject to noise and fading, and the allocated bandwidth is typi-
cally small so as to maximize useful data throughput. In addition,

even though power control may be used to eliminate the effect

of fading on feedback information [4], this comes at the price of

increased energy usage for a mobile user. It is thus worthwhile
to investigate the impact of feedback channel imperfections when

uncoded information is sent back to the transmitter.

This paper analyzes the impact of a Bayesian feedback detec-
tion strategy on the performance of an adaptive modulation system

(AMS). Since the average signal-to-noise ratio (SNR) for a slowly

fading channel is subject to large-scale fading, it may be assumed

to be constant with respect to small-scale fading. Thus, it is realis-
tic to assume that the average SNR can be reliably fed back to the

transmitter, where it can be used to compute the AMS state proba-

bilities, which are also the (unequal) feedback signal transmission

probabilities. The feedback communication system can then be
formulated as a classical multiple hypotheses testing problem [5],

and one may presume that maximum likelihood (ML) feedback

detection is sub-optimal to maximum a posteriori (MAP) or, more

generally, Bayesian detection. While this is true from a one-way
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(feedback) communication link viewpoint, we show that the same

cannot be said for the overall adaptive system performance.

Prior work in this area includes the adaptive trellis coded QAM

system of [6], where the feedback information is protected by an
error control code. The effect of arbitrary bit errors on a two-state

system was shown in [4], where feedback power control was used

to ensure a constant received power at the transmitter. The feed-

back scheme in [7] mitigates performance degradation due to feed-
back errors by employing a Finite State Markov Channel model.

In this paper, we generalize the work of [4] to an N -state (N > 2)

AMS without feedback power control, and compare ML and MAP

feedback detection strategies. It is shown that the AMS BER per-
formance for MAP feedback detection satisfies a target BER con-

straint over a practical SNR range, while the ML detection strategy

fails at low SNR. Interestingly, it is seen that the AMS BER perfor-

mance for ML feedback detection is better at high SNR compared
to MAP detection. This seeming contradiction motivates the work

in this paper. The MAP scheme can be generalized to Bayesian de-

tection by defining a cost function matrix, which assigns (unequal)

weights to the feedback decision error probabilities. The result is
close to ideal bit error rate (BER) performance with only a small

drop in spectral efficiency

Section 2 describes the adaptive system including the feedback

communication model, while the feedback strategy is presented in
Section 3. Performance results are shown in Section 4 and conclu-

sions are given in Section 5.

2. SYSTEM MODEL

Consider an adaptive modulation system with N QAM constel-
lations, M = {Mi}N−1

i=0 , operating over a flat fading Rayleigh

channel. To focus on the effect of the feedback channel’s imper-

fections, perfect channel knowledge at the receiver and negligible

feedback delay are assumed. The SNR range for the forward chan-

nel can be partitioned as

si � {γ : γi ≤ γ < γi+1} i = 0, 1, . . . , N − 1 (1)

where s0 is the outage state, γ is the received SNR, and the re-

gion boundaries, {γi}, can be computed from approximate instan-

taneous BER expressions for M [1, 3]. If the feedback channel is

perfect, Mi is transmitted at the nth time instant only if γ(n) ∈ si.
Now for a realistic feedback channel, the feedback modulator at

the receiver is given by

φ(si) → U = {u0, u1, . . . , uN−1} , ui ∈ {−1, 1}b

where U is a set of vectors of BPSK symbols. Here, BPSK is cho-

sen for its comparatively high noise immunity for uncoded trans-

mission. The average energy of each symbol is set to unity, while
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b = �log2 N� is the number of bits required to uniquely describe

M. At the transmitter, the received feedback vector at the nth

signaling instant is

v(n) = hfb(n) u(n) + zfb(n) (2)

where hfb∼CN (0, 1) is the feedback channel realization, and is

assumed to be constant for b symbols and known at the transmitter.

The additive noise vector zfb∈C
b consists of zero-mean indepen-

dent and identically distributed (i.i.d.) elements having variance

σ2
fb. For a feedback transmit power denoted as P fb, the feed-

back SNR per symbol is expressed as α = |hfb|2P fb/σ2
fb with

average SNR ᾱ = P fb/σ2
fb. The selection of P fb is based on

a designer-specified feedback channel quality. For example, for

an AWGN feedback channel and a specified BERfb, the instanta-

neous BER expression for ML BPSK detection may be inverted to

give P fb = 1
2

(
Q−1BERfb

)2
, where Q(·) is the right-tail proba-

bility of the standard normal distribution and σ2
fb=1 without loss

of generality. At the transmitter, the output of the feedback detec-

tor, û = ψ(v), is used for rate adaptation.

Let qi,j denote the probability that Mi is selected for trans-

mission when sj is the true state. In this case, it can be shown that
the transmission probability becomes [4, 7]

π′
i =

N−1∑
j=0

qi,j πj (3)

where πj = Pr(sj) is the jth state probability and is equivalent

to the transmission probability in the absence of feedback errors.
It can then be shown that the modified average spectral efficiency

and BER are [7]

SE =

N−1∑
i=1

log2(Mi)π′
i (4)

and

BER = (SE)−1
N−1∑
i=1

log2 Mi

×
N−1∑
j=0

qi,j

∫
sj

Pb(e|γ, Mi) p(γ)dγ, (5)

where Pb(e|γ, Mi) is the instantaneous BER expression for Mi

and p(γ) is the probability density function (pdf) of γ. In this

paper, system performance refers to the AMS.

The detection process ψ(·) determines the feedback decision

error probability and, in turn, the system performance. In the next

section we derive the decision error probability expressions for a
Bayesian feedback detector.

3. BAYESIAN FEEDBACK STRATEGY

In most communication systems, transmitted symbols are assumed

to be equally likely so that a minimum probability of error receiver

is equivalent to an ML detector. However, this is not the case for
the AMS feedback communication model considered here because

feedback transmission is coupled to the instantaneous value of γ.

Since πi is functionally dependent on the average SNR γ̄ [1], the

state probability vector π = [π0, . . . , πN−1] can be computed if

γ̄ is known at the transmitter. This implies that ML feedback de-

tection may be sub-optimal to MAP, or more generally, Bayesian

detection. The decision error probabilities in (3), (5) are then ob-
tained by solving a classical multiple hypotheses testing problem,

where the ith hypothesis is defined as

Hi : γ ∈ si , i = 0, 1, . . . , N − 1. (6)

In the framework of detection theory, qi,j � Pr(Hi|Hj) is the

probability that the transmitter decides Hi when Hj is true. The

optimum solution is obtained by minimizing the Bayes risk [5]

C̄ =

N−1∑
i=0

N−1∑
j=0

Cij Pr(Hi|Hj) πj

=
N−1∑
i=0

∫
Li

C̄i(v)p(v)dv (7)

where Cij is the cost of choosing Hi when Hj is true, p(v) is the

pdf of v, Li = {v ∈ C
b : Hi is chosen} and

C̄i(v) =

N−1∑
j=0

Cij Pr(Hj |v). (8)

Thus, the optimum detector chooses Hi if

C̄i(v) < C̄j(v) ∀ j �= i . (9)

It is commonly assumed that Cii = 0, Cij = 1 ∀ i �= j. Hence,

inserting these values in (8) and applying (9), it can be shown that

the Bayes receiver is equivalent to a MAP detector, which selects

Hi = maxj Pr(Hj |v) [5, 8]. This is not necessarily the case
for the feedback communication model considered here. For ex-

ample, when γ∈s0, i.e., the outage state, the cost of transmitting

64−QAM should be greater than the cost of transmitting BPSK

since achieving the target BER constraint is of greater importance
than maximizing the spectral efficiency.

The computation of Pr(Hi|Hj) for the multiple hypotheses

problem is difficult because the decision regions, {Li}, are deter-

mined by N−1-dimensional hyperplanes [5]. In Section 4, we
present performance evaluation results obtained by simulation us-

ing (9). For the two-state system of [4], which becomes a binary

hypotheses testing problem in this paper, closed form expressions

can be obtained as shown in the next section.

3.1. A two-state system

Consider the binary hypothesis testing problem, (H0,H1) and let

Cjj = 0 for any j. Then, (7) becomes

p(v|H1)

p(v|H0)

H1
≷
H0

C10π0

C01π1
(10)

where p(v|Hj) is equivalent to the multi-dimensional complex

Gaussian pdf,

p(v|hfb uj) =
1

(πσ2
fb)b

exp

(
− 1

σ2
fb

‖v − hfb uj‖2
2

)
.

Taking the logarithm of both sides of (10), the test statistic be-
comes

‖v − hfb u0‖2 − ‖v − hfb u1‖2
H1
≷
H0

σ2
fb ln

C10π0

C01π1
. (11)
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Defining η = ln C10π0
C01π1

the test statistic can now be expressed as

D(v) � Re
{
(hfb)∗(u1 − u0)

T v
}

− 1

2
|hfb|2 (‖u1‖2 − ‖u0‖2) H1

≷
H0

σ2
fb

2
η , (12)

where Re , ∗, T denote, respectively, the real, conjugate and trans-
pose operations. By noting that the transmitted sequences are real,

it is straightforward to show that [8], conditioned on either hypoth-

esis, D(v) is Gaussian distributed with

E{D|H1} = 1/2 |hfb|2 d2
1,0P

fb
(13)

E{D|H0} = −1/2 |hfb|2 d2
1,0P

fb
(14)

and a common variance, σ2
fb/2 |hfb|2 d2

1,0P
fb, where d1,0 is the

Euclidean distance between u1 and u0. Therefore,

Pr(H0|H1) = Eα

{
Pr(D(v) <

σ2
fb

2
η |H1)

}

= Eα

⎧⎪⎨
⎪⎩Q

⎛
⎜⎝

√√√√(
d2
1,0α − η

)2

2 d2
1,0α

⎞
⎟⎠

⎫⎪⎬
⎪⎭ . (15)

Similarly, the expression for Pr(H1|H0) is obtained by changing
the sign in the squared term of Q(·) in (15).

To analyze the performance of the system, let C01=C10. In

general, π0 �=π1, resulting in a decision biased in favor of the more

likely hypothesis i.e.,

Pr(H0|H1) < Pr(H1|H0) for η < 0

> Pr(H1|H0) for η > 0 (16)

since Q(·) is a decreasing function of its argument.

At low SNR, π0 > π1 so that the inequality Pr(H1|H0, α) <
Pr(H0|H1, α) holds. This is desirable from the AMS perspective
because a wrong decision in favor of H1 increases the BER. Con-

versely, Pr(H1|H0, α)>Pr(H0|H1, α) at higher SNR. There-

fore, if Pr(H1|H0, α) is greater for MAP compared to ML de-

tection, the BER would correspondingly be higher because the de-
cision favors H1, implying more frequent transmission. It should

be noted that the average BER of the feedback channel with MAP

detection is, in general, better than ML detection. However, for the

coupled system, the individual crossover probabilities are of more
significance to the AMS BER performance. This clearly indicates

that the well-known sub-optimality of ML to MAP detection, in

terms of BER performance, is strictly based on a one-way com-

munication link perspective. The overall effect of feedback error
on the adaptive system performance would show that, at high SNR,

the BER for MAP is higher than that for ML feedback detection.

This effect is similarly present for the more general AMS when

N> 2 as shown in Section 4.

3.2. Bayesian Cost Function

While equal cost functions are the norm in traditional communica-

tion systems, the importance of the BER being as small as possi-
ble, and not simply to satisfy the BERT , may supersede the desire

for maximal spectral efficiency in some applications. We can then

generalize MAP to Bayesian feedback detection by defining suit-

able cost functions.

To define a cost function matrix for minimum average BER, it

is desirable that Cij>Cji and Cij>Ckj for i>k>j. It is difficult

to quantitatively assign costs in general due to the subjective nature
of the impact of wrong decisions on a system. In this paper, we use

the cost function

Cij = |i − j|, Cji = β Cij i > j, β ∈ (0, 1]. (17)

In other words, the cost of transmitting at a higher rate than what
the channel state calls for, is higher than the cost of transmitting

conservatively. It would be shown that the choice of β influences

the system performance.

4. RESULTS
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Fig. 1. Average BER for an N=2 AMS using ML, MAP detection

for a fading feedback channel.

For all results in this section BERT =10−3. The analytical

performance of a two-state system for an outage state and BPSK
modulation is shown in Fig. 1 for a fading feedback channel with

ᾱ=15 dB. It can be seen that at low SNR, ML detection fails to sat-

isfy the BERT while the BER curve for the MAP scheme is lower

than the BERT over the SNR range. However, there is a crossover
point at γ̄=8.75 dB after which the ML gives better performance.

This validates our earlier analysis of the impact of these detection

strategies.

An adaptive M-QAM system is simulated with 7 non-zero
QAM constellations, {2i−QAM}7

i=1 over a flat fading Rayleigh

channel with a normalized Doppler frequency of 10−3. Fig. 2

shows the average BER performance for an AWGN feedback chan-

nel where P fb is obtained by setting BERfb=10−3 and σ2
fb=1 for

ML detection. The MAP/Bayesian schemes are implemented us-
ing (7). A similar trend for the two-state system is also observed

with a crossover point at γ̄ ≈ 20.5 dB. There are only negligible

differences in the spectral efficiency and thus, it is not shown here.

It should be noted, though, that from the point of view of satisfy-
ing the BERT , MAP is optimum over the whole SNR range. Using

the cost function of (17) with β = 0.01, the performance is close

to the ideal case. However, there is a small penalty in the spectral

efficiency of less than 0.02 bps/Hz at high SNR.
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Fig. 2. Average BER for an N=8 AMS using ML, MAP and

Bayesian detection over an AWGN feedback channel.

The BER performance difference is even more significant for

a fading feedback channel as shown in Fig. 3. The average SNR

of the feedback link is set to ᾱ=15 dB. The ML detector cannot

be used for γ̄<19.5 dB, while the MAP can be used over the full
SNR range. Again in the high SNR region the ML gives improved

performance compared to MAP. For the Bayesian schemes shown

in Fig. 3, the effect of varying β results in the BER performance

approaching that of the ideal feedback channel but there is a small
loss in spectral efficiency of 0.03, 0.13 bps/Hz respectively for

β=0.1, 0.01. Therefore, there is a trade-off between lowering the

BER as much as possible and maximizing the spectral efficiency.

5. CONCLUSION

It is shown that if the average SNR for the forward channel is

known to the transmitter, MAP feedback detection consistently re-

sults in an AMS average BER performance lower than the target

BER constraint while ML feedback detection does not. However,

an interesting phenomenon is shown where ML may outperform
MAP in the high SNR region. For applications where a small

decrease in spectral efficiency can be traded for lower BER, a

Bayesian cost may be defined to achieve close to ideal BER per-

formance for the AMS. The main assumption used in the paper,
namely that the average SNR is known to the transmitter, could

be relaxed by formulating the problem as a minimax multiple hy-

potheses problem. This would be pursued in future work.
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