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ABSTRACT

Given a relative maximum of the log-likelihood function,vinéo
assess whether itis the global maximum? In this paper weogeop
a statistical tool to answer this question by posing it as @otty
esis testing problem. A general framework for constructiegjs
for global maximum is given. The characteristics of thedese
investigated for two cases: correctly specified model andeho
mismatch. A finite sample approximation to the power is given
which gives a tool for performance prediction and a measorre f
comparison between tests. The tests are illustrated foappbca-
tions: estimating the parameters of a Gaussian mixture haodke
direction finding using an array of sensors - practical potd that
are known to suffer from local maxima.

1. INTRODUCTION

The maximum likelihood (ML) estimation method is one of the
standard tools for parameter estimation. A major drawb#tki®
method when applied to non-linear estimation problemsdadaht
that the associated likelihood equations required for grvation
of the estimator rarely have a closed form analytic solutido
solve the resulting global optimization problem, initiated con-

verge methods are often applied. These methods are based on a

initial guess (often found by a simpler method) which isduled
by a local, often iterative, optimization procedure (e.ge EM

region which does not contain the true parameter. A drawbéck
these tests is that under model mismatch, they cannot giigsin
between local and global maxima.

The contribution of this paper is as follows. For correctes-
ified models a general framework for constructing tests ahlat
cal maximum is the global maximum is presented. Then a class
of new tests is given, which are simpler to compute and in some
cases give better performance than previously proposeloai®t
In addition, we derive an approximation of the power of thetse
which is useful for predicting performance and provides asnee
for comparing between tests. For cases where model mismatch
can occur, a method is given for off-line calibration of tkeett to
improve performance. Finally, we illustrate the method tiwo
parameter estimation problems.

2. PROBLEM FORMULATION

Consider a collection of. i.i.d. P x 1 random vectorsy:, t =
1,...,n drawn from an unknown density(y). The information
we want to extract from the data is encoded iR a< 1 parameter
vectorf = [01, 02, ..., Ox]", through which we define a regular
parametric class [5] of density functiofig(y,0) : 6 € ©}.
Denote byL,(Yn;0) = 13"  log f(y:;0) the normal-
ized log-likelihood function of the measurements, whafg =
[yi1y2 ... yn]. Denote byén = argmaxgece Ln(Yn;0) the

algorithm). As a consequence, the performance of these-meth ML estimator (MLE).

ods highly depends on the starting point. In particulahé tog-
likelihood function is not strictly convex and there is na#able
method that is guaranteed to provide an initial guess witerat-
traction region of the global maximum, then there is a risk th
local search will stagnate at a local maximum. This phena@nen
leads to large-scale estimation errors.

The maximum likelihood framework would benefit from an
answer to the following question: Given a relative maximuim o
the log-likelihood function, how to assess whether thikésglobal
maximum? In this paper we take a statistical approach to @msw
ing this question. Specifically, given a relative maximursfatis-
tical test is performed to test whether or not it is the glabaki-
mum.

Several global maximum tests have been proposed [1, 2, 3].

While applied to cases where the statistical model is ctrteese

Denote byE {-} the expectation with respect to true under-

lying densityg(y), and let@* 2 arg maxgeco E {log f(y;0)}.
Theoremg.1, 2.2, and3.2 of White [6] assert that under possible
model mismatct®,, 5 * and \/ﬁ(ﬁn — 0%) is asymptotically
zero-mean Normal distributed with covariance matfix0*) =
A7'(6")B(6")A"'(0"), whereA(0) = E{Vglog f(y;0)},
B(@) =E {Vg log f(y;0)Vg log f(y; 0)} When the model is
correctly specified, i.eg(y) = f(y,8°) for some uniqued® ¢
©, this result becomes the standard consistency, and asiopto
Normality result for the MLE, wher@* = 0°, andC(0°) =
—A~1(8%) = B~1(8°) is the inverse of the Fisher information
matrix (FIM).

Denote bﬁn one of the relative maxima of the log-likelihood
function. The problem addressed in this paper can be fotedila

tests are based on tests for model mismatch [4] and the @bserv as a hypothesis testing problem. Givign decide between

tion that a local maximum of the log-likelihood function ircar-

rectly specified model is in fact a global maximum of a misspec

ified model - a model in which the parameters are restrictel to
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A statistical test which gives a solution to this problemadied a
test for global maximurft, 2].



3. CONSTRUCTION OF THE TESTS

We start by deriving the asymptotic distribution of a gehetass
of statistics which are functions &, andY,,. This will lead to
the construction of tests of (1). A similar treatment is giva
the context of model specification testing in [4]. The testey
in [1, 2, 3] can be derived as special cases of this consbructi
Consider a vector valued functian(y,8) : R x ® — R,
and define the vectois, () = 1/n > ., e(y:,0), andh(9) =
E{e(y,0)},theQ x K matrixH,,(0) = 1/n > 1 Vie(y:,0),
and its expectatiof(0). Finally, define the) x @ covariance
matrix V(0) by

E{[e(y,0) — h(6) —~ H(0)A™'(0)Vlog f(y:0)] x
[e(y.0) — h(6) —H(6)A™(0)V log f(y:0)] " }
and its empirical estimaf¥,, (8) by

Z le(y:, 0

le(y:,0) — L0)Vlog f(y:0)] ",

and assume thai(y, 0) is such thaiv (6

—h,(0) — H,(0)A, " (0)Vlog f(y:;0)] x

h,(0) —-H,(0)A,

*) is nonsingular.

Theorem 1
n [ (8) ~ 1(6")] V2 @) [B.(0,) ~hi67)] @

is asymptotically distributed as Chi-square withdegrees of free-
dom 3).

Proofs of all theorems are given in [7]. Theorem 1 is used
to construct tests for global maximum in the following mamnne
Choose a functior(y, 8) having zero mean at the poift, that
is

h(0") =E{e(y,0")} = 0gx1 - @)
This function will be called thglobal-maximum validation func-
tion. Theorem 1 asserts that undés, and when (3) is satisfied,
the statistic
Sn = nhy (0,)V, " (02)hn(6:) (4)
with V; ( ») computed by (2) is asymptotlcalby% distributed.
Denote bnyzQ( ) thexg, cumulative distribution function. There-

fore, a false alarm levek test of the hypotheses (1) is made by
comparingS,, to the threshoIdF (1 — a). If S, exceeds the

threshold Hy is rejected and one concludes that the iterative local
search should be reinitiated in the hope of convergence iftea-d
ent maximum. Otherwise, the null hypothesis cannot be tegiec
and@,, is declared a global maximum. If (3) does not hold for any
other local maximum of the ambiguity function, then the tiest
consistent, i.e., it has asymptotically unit power for ang (0, 1)
(see [1, 3], and the discussion in Sec. 5).

3.1. Moment Based Tests

The following class of tests are based on the property that th
moments of the distribution induced by the estimated parame

should be in good agreement with the empirical moments of the highest relative maximum ai(8).

data. Therefore, these tests are especially suited fos dasehich

the underlying physical model specifies a simple paranatioa

of one of the moments of the data. For example assume that the
first moment ofy is modelled byu(68) = [ yf(y;8)dy, where
wu(-) is a pre-specified non-linear functlon Then to construct a
test, which is based on the first momeaty, 0) is taken to be
e(y,0) = y — pn(0). This choice ofe(y, 8) leads toh, (0,) =
LSyt — p(6y). If the first moment of the data does not de-
pend on@ or is weakly dependent, it is possible to base the test
on any other moment. For example, one can kege ) on one
element of the correlation matrix(y, 8) = [y, [y]; — Ri;(6),
whereR;;(8) = [ [y], [y], f(y;@)dy is pre-specified from the
underlying model. Tests that are based on the moments ofithe d
are easier to compute than the tests available in the literaand,

as will be shown in the simulation results, remarkably doneet
duce performance.

In Sec. 6, moment based tests are compared to Biernacki's
test [3], in whiche(y, 8) =log f(y; 8)— [log f(y; 8) f(y; 8)dy.
Thus, Biernacki's test compares the log-likelihood eveddaato,,
and its expected value, which is calculated a&,ifis the true pa-
rameter.

4. MISSPECIFIED MODELS

If the test statistic is designed under the assumption tieatrtodel
is correctly specified but the actual underlying distribatis out-
side the parametric family, then (3) may be violated. In tase,
Sy» will not be X% distributed and hence the specification of the
level is incorrect. Whei(6™) # 0 it can be shown that the finite
sample distribution of the statistic is approximately a-central
X& With noncentrality parametex,, = nh” (6*)V~'(6*)h(6*),
denoted bw%(An). Therefore, specifying the level of the test ac-
cording to theXQQ distribution is no longer valid, and in fact, as the
number of samples increases, the false alarm probabititgases
to one regardless of the test threshold.
However, suppose an upper bound&pn can be found, say
Then by setting the threshold according to the non-central
(M)(l — o) we insure that the false

alarm probability decreases (instead of increases)mitrhis will
be demonstrated in Sec. 6.1.

.-
Chi-square critical vaIuaFX’z1
Q

5. FINITE SAMPLE POWER APPROXIMATION

To derive the power function, the distribution éf, under H;
needs to be approximated. Therefore, assumptions on tluist
of the ambiguity function, defined by(6) = E {log f(y; 0)}, at
different local maxima are required. Assume that the systém
equationsVa(0) = Ok x1, has a finite number of solutions @
and each one of these solutions is an interior poir®ofin addi-
tion, at each of these points, the mafKY)?a(G) is either negative
definite or positive definite. The ambiguity functiafg) has its
global maximum a®*. Denote byd™, m = 1,..., M, the other
M local maxima ofa(8).

Theorem 2 3N such thatyn > N, L,(Y,;0) hasM + 1 local
maximaw.p.1. Furthermore, the location of these relative maxima
are strongly consistent estimates #tand0™, m =1,..., M.

Let ®™ be a closed neighborhood éf™, in which 8™ is the
Define them'th local-MLE



by 0A7” = argmaxgcom Ln(Yn; 0) =1,...,M. Theorem 2
asserts that for sufficiently Iarge 6., will be equal to one of the
local- MLESOm The local- MLEO’” is the MLE associated with
the model{f(y,0) : 6 € ©™}. By applying Theorem 1 we
obtain the following:

Corollary 1 If V(™) is nonsingular,

n [ (@)~ ho™)] " Vi @) [ (8 - he™)] )

is asymptoticallyg, distributed.

Hence, for the test to be informative for the hypothedg®™ )
must not equabDgx:1. Otherwise the statistic is asymptotically
identically distributed under the two hypotheses. Wigen =
537 andh(0™) # Oxx1, the test statistic (4) is approximately
Xg(er), whereer® = nh” (6™)V " (6™)h(6™). Now, recall-
ing that for a given leveky, the threshold of the test is set to
FX};(I — «), the finite sample power of the test against a local
maximum at9™ can be approximated by

B R 1= Fa (am) (Fyz 1(1—a)) : (6)
Therefore the power of the test against a local maximufiats
characterized bh” (6™)V~'(6™)h(#™), which will be called
the power characteristic of the teas a function o®™. For any

fixed z, ima oo Fl2 (A)( x) = 0. Hence, if the power charac-

teristic is not |dent|cally zero, the level of the test apgrioesl as
n increases. In Sec. 6.1 an example will be given in which this
approximation is accurate even for small

6. SSIMULATION RESULTS

The asymptotic regime assumed throughout the paper rdises t
question of small sample performance. In this sectiongs tfest
global maximum are evaluated througp00 Monte Carlo itera-
tions. By computing the empirical level and power of thedgst
we evaluate: (a) the accuracy of the asymptotic approxanati
Fxgl(l — «) for the level« threshold of the test, (b) how fast

the powerg,, of the test approachelsas the number of samples
increases, and (c) how accurate is the finite sample poweogpp
imation (6). Finally, the sensitivity of the tests to modebmatch
is examined and the threshold adjustment procedure ofdbedti
is demonstrated.

6.1. Estimation of Gaussian Mixture Parameters

The problem of estimation of Gaussian mixture parametésssr
in non-parametric density estimation [8] and a variety ofstér-
ing problems [9]. The MLE for this problem is usually found by
using the EM algorithm. In [9], the authors describe a metihad
attempts to find the global maximum. However, even this sifite
the art method might stagnate at a local maximum, and thexefo
tests for global maximum are useful.

We consider the univariate case, in which independentscala
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Fig. 1. Gaussian mixture: performance when the model is cor-
rectly specified.
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Fig. 2. Gaussian mixture: performance under model mismatch.

o? =1, 62 = 0.5, the mixing probabilities arg; = 1 — py =
0.35 and it is known tha® = [—1, 4] x [—1, 4]. In this setting,

the likelihood function has two relative maxima.

Biernacki's test [3] and the first moment test of Section 3.1
were applied to this problem. In Fig. 1, the empirical levetia
power, and the analytical approximate power (6) are present
where B and M are shorthand notations for Biernacki's test an
the first moment test, respectively.

Next, the robustness of the tests to model mismatch was eval-
uated. The mismatch is due to misspecified values of the param
eters that are assumed known, namely the variances of the two
mixtures. A discussion on scenarios in which this kind of elod
mismatch occurs was recently given in [10]. The MLE and the
tests were computed according to the model given beforehieut t
samples were generated according to a different model. &we n
model, which is outside of the parametric class, is the samesG
sian mixture but with variances? = 0.75 ando? = 0.4. As
can be seen in Fig. 2, the moment test is robust to this model mi
match whereby Biernacki's test suffers as the number of &snp
increase. Biernacki's test detects the model mismatch ejedts
the null hypothesis even when the relative maximum is indeed
global one. The moment test is not sensitive to this modet mis
match. Even though the MLE is slightly inconsistent in thise
(6" = [—0.0248 3.0052]), equation (3) is still approximately sat-
isfied and the performance of the test is preserved.

In Fig. 3 the effect of the threshold correction of Sec. 4 &-pr

measurements are generated according to a two component unisented. An upper bound of,, for each of the tests was found

variate Gaussian mixture density, where the parameteowveoh-
sists of the two mean® = [ 72]”. The number of components,
the variances, and the mixing probabilities are assumedknn
the simulation, the true paramete#is= [0, 3]7, the variances are

under the assumption that the maximal deviation from theinom
nal values of? ando? are0.25 and0.1 respectively. Due to the
threshold correction, the level of the tests is decreasitiger than
increasing as increases, at the price of reduced power.
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Fig. 5. Direction finding: performance under model mismatch.

Fig. 3. Gaussian mixture: performance of the tests under model
mismatch, after threshold correction.

7. CONCLUSIONSAND FUTURE WORK

a=0.01

This paper has presented a method for detecting a case ih whic
local search for the maximum likelihood has stagnated atal lo
maximum. This is a useful tool in the solution of the global op
timization problem associated with the ML method. Because e
isting tests are sensitive to model mismatch, the generalrtrent
given here is necessary for implementing this tool in pcactirhe
framework given for the construction of tests and the powetd-a
ysis enable us to pose fundamental questions of optim&ityen

a statistical model, what is the best choicee¢§, 8) in terms of
achieving maximum power for a given level with minimum sensi

Probahity

a0 60 B0 140

100 120
Number of samples

tivity to model mismatch? This remains an open question.

Fig. 4. Direction finding: performance when the model is correctly
specified.

(1]
6.2. Direction Findingin Array Signal Processing

(2]
We adopt the standard narrow band model of [11]. We consider
the estimation of the directions of two uncorrelated narbamd
Gaussian sources using a uniform linear array’of= 4 sensors
with \/2 spacing between elements. The received signal model
is given byy: = D(8)s: + e;, wherey; € C¥ is the noisy
measurement vectoB (0) = [d(0:1), d(02)], where[d(6)],
exp{jpmcos(0)}, p =0, 1,2, 3 is the steering vectos,; contains
the two signal components, amrgd is a temporally and spatially
white circular Gaussian noise. This signal model corredpdn
the so called stochastic signal model in which the receivegd s
nal at the array is distributed as a temporally white zeresme
circular Gaussian random vector with covariance magg) =
D(0)K,D(0) + 1, where, due to an uncorrelated sources as- [7]
sumption K, = diag(c?,,02%), o2, ando?, are the two source
variances, and? is the noise variance. The noise and signal 8
variances are assumed known. The unknowns are the source di-
rections,® = [61, 62]7. In the simulations® = [1.4, 1.7],
[021, 62] = [1, 4], ando? = 1. In this problem, the likelihood
function has two relative maxima.

Biernacki's test [3] and a second moment test which is based
on the first off diagonal element of the covariance matrixever
applied. In Fig. 4 it is seen that for this choice of paranetae
second moment test outperforms Biernacki’s test.

Next, the robustness to model mismatch was tested as the nois [14]
variance was altered froiinto 1.2 without changing the parametric
class. In Fig. 5 it is seen that Biernacki's test is more g@msio
this kind of model mismatch than our second moment test.

(3]

(4]
(5]
(6]

(9]

(10]
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