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ABSTRACT

Following the SENMA concept, we consider a wireless net-
work of very dumb and cheap sensors, polled by a travel-
ling “rover”. Sensors are randomly placed and isotropic:
individually they have no ability to resolve the direction of
arrival (DOA) of an acoustic wave. We assume that the com-
munication load must be as limited as possible, so that these
times cannot be communicated to the rover. Notwithstand-
ing the lack of transmission of arrival times and the lack
of DOA resolution ability of the individual sensors, DOA
estimation is possible, and asymptotic efficiency becomes
closely approximated after a reasonable number of rover
snapshots. Key features are the directionality of the rover
antenna, the area it surveys, and the average number of sen-
sors inside that area, as accorded a Poisson distribution.

1. INTRODUCTION

A large network of extremely low-complexity (a.k.a.,“dumb”)
sensors is employed to estimate the direction of arrival (DOA)
of a plane-wave (far-field, and for concreteness, let us as-
sume acoustic) event. The system is designed to detect the
wavefront passage regardless of the signal waveform fea-
tures. The sensors are isotropic: none of them has any abil-
ity at all to resolve the DOA on its own; however, each can
memorize the time instant of the acoustic wavefront pas-
sage. The sensors are randomly displaced over a certain
surveyed area according to a Poisson field model, as might
occur were the sensors dropped by an aircraft in an unstruc-
tured way.

According to the SENMA model, a travelling rover re-
ceives (electromagnetic) signals from the sensors that lie in
its field of view. As is well known, a distinct feature of
sensor networks is the trade-off between the communica-
tion load, the requirement to fuse the data, and the accuracy
of the network inference goal (e.g., detection of events, pa-
rameter estimation, etc.), e.g. see [4]. We avoid any concern
about the communication burden: all the sensors transmit to

THIS WORK WAS PARTIALLY SUPPORTED BY THE OFFICE
OF NAVAL RESEARCH.

Fig. 1. The addressed scenario. A travelling rover polls the
remote sensors inside its field of view. The DOA estimation
procedure is based on the number of sensors that lie inside
the strip of width δ. The separate box introduces some nota-
tions: θ is the sought DOA, φ is the rover orientation, whose
field of view is an ellipse with axes r and h.

the rover using one and the same channel. The key point
is that they do not transmit bits of data, but simply emit
an analog periodic signal made of short pulses. In aggre-
gate they form a train of delta-like pulses, and this is what
the rover observes. The directionality of the rover antenna
is key and in fact the more asymmetric is the antenna lobe,
the more effective the estimation procedure becomes1; how-
ever, there are limits, as discussed in the following.

We find it convenient to work with a reasonable simple
mathematical model: the rover’s antenna pattern – probably
in practice some sort of truncated cone – is modelled as an
ellipse. There is no requirement for an elliptical field of
view, only that the the field of view is known; the ellipse
makes analysis convenient and explicit.

This conference paper is almost identical to [2].

1The sensors are dumb and isotropic; the rover is not.
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2. MODEL

The notional scenario is depicted in figure 1. We consider
a large network of wireless sensors, say Si, i = 1, 2, . . .,
covering a certain two-dimensional region. The sensors are
randomly located according to a Poisson field probability
model, with λ being the sensor density per unit of area: the
average number of sensors, inside an arbitrarily shaped re-
gion of area A, is λA.

We assume that each Si is an acoustic antenna, with no
directionality capabilities: its antenna pattern is isotropic.
If hit by a short-duration acoustic wavefront, coming from
an arbitrary direction, sensor Si starts to transmit an elec-
tromagnetic periodic signal xi(t) =

∑
k p(t − τi − kT )

where p(t) is a short pulse of arbitrary shape, τi is the time
at which the acoustic wavefront impinges on the device, T
an a-priori chosen time interval, common to all sensors, and
k an integer.

According to the SENMA paradigm [5], a roving base
station (rover in figure 1) travels the area. For some fixed
position, the rover takes a dwell: it collects, for a certain
time interval2, the signal r(t) =

∑
i∈F xi(t). Such a re-

ceived signal is made of the superposition of the |F| signals
emitted by the ensemble F of sensors lying in its field of
view. It is worth emphasizing that for reasons of analysis
one might assume that the sensors emit their pulse trains
continually; but for reasons of battery life the emissions
would remain virtual until a rover requests them via a poll.

We assume that the antenna pattern is an ellipse with the
main axis of length r aligned to the rover, and the secondary
one of length h. It is also assumed that all signals coming
from sensors inside the ellipse are visible, while conversely
none from outside can be received; this defines the rover’s
field of view3.

A typical waveform r(t) received by the rover is schemat-
ically illustrated in figure 2. Note that we set T = 2r/v,
(larger T works as well), where v is the speed of the acous-
tic wave in the medium: r/v is the time needed to the acous-
tic wave to cover the main axis of the lobe. Such a choice
enables the rover to order the observed pulses so that τi <
τi+1, since sensors inside the field of view all have a max-
imum time-interval of r/v, and since the pulse period is
twice that. This is illustrated in figure 2, where the zoomed
time axis (below) gives the correct pulse ordering4. Clearly,
the sensor positions are unknown and the pulses are un-
labelled: the rover is neither able to recover the absolute

2A minimum interval of 2T can be shown to be sufficient.
3Thus, again with reference to figure 1, the elliptical field of view is

actually the combination of the antenna pattern and of the maximum trans-
mitting distance of the signal emitted by the sensors.

4Actually, the depicted times should be τi + kT for some k; we write
τi for simplicity; we are interested only with time differences. Note also
that considering acoustic DOAs avoids possible concerns about synchro-
nization between sensors and rover.

Fig. 2. The signal collected by the rover is schematically
depicted in the top plot. With an appropriate observation
interval (larger than twice the pulse period T ), it is possi-
ble to order the pulses: they are arranged in the same order
in which the sensors have emitted them (i.e., have been hit
by the acoustic wavefront), see bottom plot. Here tm is the
middle point between τ1 and τ5, and the δ/v-interval cen-
tered on tm includes the two pulses at τ3 and τ4. These are
emitted by the two sensors inside the δ-strip of figure 1.

times, nor it is capable of associating any pulse with its cor-
responding sensor position inside its field of view.

In this letter we propose the following sub-optimal ap-
proach, simple to understand and easy to implement. Again
with reference to figure 2, consider the first and the last re-
ceived echoes and compute tm = (τ1+τ|F|)/2. Then, count
how many pulses lie in the interval (tm−δ/2v, tm +δ/2v),
δ < h, with δ/v being the time for covering an acoustic
distance δ. Let Ns be this number, where s is the snapshot
index; our estimation procedure is based on the observables
Ns. We understand that more sophisticated strategies are
possible: one might exploit more complete information (as
compared to just Ns) contained in the received r(t). Exam-
ples will be offered in [3], and we note that one such exam-
ple exploits the DOA information embedded in τ|F| − τ1.

The receiving antenna of the rover can be arbitrarily ori-
ented; or alternatively the rover rotates. In both cases it may
explore the whole 2π arc, for any given position. A key as-
sumption made here is that successive snapshots taken by
the rover always involve sensors never encountered before
(i.e., snapshot independence). For analysis it is sufficient to
take each sensor as having a periodic emission; for practical
battery life they would be silent unless provoked by a rover
poll.
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3. DOA ESTIMATION AND PERFORMANCES

Let θ ∈ (0, π) be the unknown DOA, and φs ∈ (0, 2π) be
the rover’s (ellipse’s) orientation at snapshot s. Assume that
Ns, s = 1, 2, . . ., are independent of each other, and note
that this number can be approximately taken as the number
of sensors that lie in the strip of width δ within the ellipse5,
see figure 1. For the sake of simplicity, such a region is
taken as rectangular: one side is given by the ellipse’s di-
ameter (corresponding to DOA θ and rover angle φs), and
the other side is δ. The area is accordingly computed as

A(φs, θ) ≈ δ√
cos2(θ−φs)

h2 + sin2(θ−φs)
r2

. (1)

The basic idea behind the proposed DOA estimation proce-
dure is that if θ is close to φs, then A(φs, θ) is small and Ns

is small as well; conversely, when θ is orthogonal to φs there
is a larger area, and consequently a larger Ns. That is, Ns

contains information about θ. More precisely, Ns is a Pois-
son random variable whose average value is approximately
λA(φs, θ). Accordingly, the distribution of the aggregate
{Ns}M

s=1 of observables collected in M independent snap-
shots is known and, from that, the θ-ML (maximum likeli-
hood) estimation can be numerically computed6:

θ̂ML = arg max
θ

M∏
s=1

[λA(φs, θ)]
Ns

Ns!
e−λA(φs,θ).

As M grows, the well-known asymptotic properties of
ML estimation [6] become met. In particular E[θ̂ML] → θ,
and VAR[θ̂ML] → I−1

M (θ), where IM (θ) is the M -snapshot
Fisher information with respect to θ. As we shortly show,
numerical investigations confirm that such performances are
in practice attained for moderately large values of M (see
below). Thus computation of IM (θ) is relevant, and is now
in order.

First, note that IM (θ) is additive for independent obser-
vations – i.e., IM (θ) =

∑M
s=1 Js(θ), where Js(θ) is the

Fisher information from snapshot s. Thus, defining ξs =
λA(φs, θ), and using Poi(x; α) as a shortcut for the Pois-
son distribution with argument x and mean α, one gets

Js(θ) = E

[(
∂ξs

∂θ

∂

∂ξs
lnPoi (Ns; ξs)

)2
]

=
(

∂ξs

∂θ

)2 1
ξs

.

5Should τ1 and τ|F| be generated by sensors located on opposite
boundaries of the rover’s field of view, this would be true. Accordingly,
the greater the sensor field density λ, the better the approximation works.

6We would like to stress that different antenna patterns would simply
lead to different formulas for A(φs, θ). Clearly, the proposed method is
applicable to different patterns, with only some (presumably minor) nu-
merical difference in the correspondent performances: the key is not the
exact shape of the pattern but rather its eccentricity.
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Fig. 3. Variance of θ̂ML compared to the inverse of Fisher
information, versus the total number of snapshots taken
M . Four combinations of the relevant parameters are ad-
dressed. The arrows on the horizontal axis denote the points
after which bias in the estimate becomes negligible, i.e.,
E[θ̂ML] ≈ θ.

The following approximation is justified by a standard Monte
Carlo integration approach, amounting to replacing the arith-
metic mean by the statistical expectation with respect to φs,
this latter assumed uniformly distributed in (0, 2π):

IM (θ) =
M∑

s=1

Js(θ)
largeM≈ M

2π

∫ 2π

0

Js(θ) dφs

=
Mλ

2π

∫ 2π

0

(
∂

∂θ
A(φs, θ)

)2 1
A(φs, θ)

dφs

= Mλδr G(h/r) = MNeffG(a), (2)

In the last equality we have defined Neff = λδr and the el-
lipse’s aspect ratio h/r has been denoted as a. The function
G(a) is expressible in terms of complete elliptic integrals of
the first and second kind, K(a) and E(a), respectively (see
[1, form. 17.3.1, 17.3.3] for the definitions). In fact,

G(a) =
2
3π

[(
1 + a2

) E(1 − a−2) − 2K(1 − a−2)
]
.

From (2) we see that IM (θ) is constant with θ, grows lin-
early with Neff and with M , and further depends upon a.

Some comments:

• Asymptotically, all the θ values can be estimated with
the same accuracy.

• δr represents the effective area of the visible region;
that is to say, it is the larger area available for the clus-
tered sensors’ counting process. Accordingly, λδr is
the average number of sensors inside such region (the
effective number Neff ).
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• G(a) decreases in a, implying that the more eccentric
the rover’s field of view (ellipse), the more effective
is estimation of the DOA.

• Ideally, for a prescribed λ, one would have h/r → 0,
with the product δr held fixed. But r cannot increase
without bound for obvious reasons (r is proportional
to the maximum transmitting distance of sensors), nor
can we have h < δ; that is, Neff and a cannot be
assigned independent of each other.

• In the limit as a → 1

IM (θ) ∼ 1
2

MNeff (1 − a)2,

and the opposite extreme of a → 0

IM (θ) ∼ 2
3π

MNeffa−1.

The Fisher proxy is reasonable provided that θ̂ML at-
tains its large-sample optimality: E[θ̂ML] → θ and VAR[θ̂ML] →
I−1
M (θ). Also, recall that there are approximations in the

proposed model: one is the way we computed the area in
(1).

We have simulated, with the double aim of checking the
approximations and of investigating at what values of M the
asymptotic performances seem to be attained. In the simu-
lations an ellipsoidal field of view is used, for simplicity and
to correspond to the explicit bounds. In figure 3 the variance
of the estimator θ̂ML is compared to the inverse of Fisher in-
formation, as given in (2). We see that within a reasonable
number of snapshots the asymptotic performances are met7.
The down-arrows on the horizontal axis denote the point
after which the absolute value of the estimator bias stays
below 10−2. To check the approximations, for given Neff

and a, we have run simulations using different combinations
of the relevant parameters λ, r, h, and δ. Qualitatively, the
results are close to those given in figure 3. For instance, in
this way we have verified that the speed of convergence of
the variance to its asymptote is essentially insensitive to the
ratio δ/h: in figure 3 we have chosen δ/h = 1/3, but dou-
bling this value basically yields the same results8. Summa-
rizing, the simulations corroborate the analysis and validate
the analytical relationships.

4. SUMMARY

We have investigated the DOA estimation by a network of
isotropic sensors polled by a travelling “rover”, with the sys-
tem design based upon the SENMA paradigm. The novelty

7In judging the practical impact of M , recall that the number of differ-
ent rover locations is just M divided by the number of snapshots taken in
a fixed position.

8Clearly, for δ ≈ h the analytical approximation behind eq. (1) fails.

is that the sensors are unusually “dumb” in that they have in-
dividually no DOA capability; indeed they have no capabil-
ities at all save that of emitting a periodic signal following
their encounter with the wavefront whose DOA is sought.
The sensors are inexpensive, randomly located, they do not
communicate each other, and their positions are unknown
both to them and to the rover.

The idea is that they send a periodic train of short pulses
that starts at the time instant that the sensor is hit by an
acoustic wave of short duration. (Actually the physical trans-
mission to the rover is virtual until the rover polls the sen-
sor.) The key point is that the rover’s field of view is ec-
centric (taken here as elliptical, but that is only for ease of
analysis). The DOA information is contained in the number
of sensors within a “stripe” in the rover’s field of view, and
oriented orthogonal to the DOA. This number is taken as
Poisson-distributed. The results are remarkably good, and
asymptotically-efficient performance is obtained with a rea-
sonable number of snapshots taken by the rover.
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