Design and Automatic Code Generation of the LMS
Algorithm for SIMD Signal Processors.

J.P. Robelly, G. Cichon, H. Seidel and G. Fettweis
Vodafone Chair for Mobile Communications Systems
Technische Universitaet Dresden
01062 Dresden, Germany
Email: robelly@ifn.et.tu-dresden.de

Abstract—Taking as a starting point a collection of algebraic Taking as an example the LMS algorithm, we introduce a

primitives that captures the SIMD computational model, we series of mathematical and software tools that enable this
show in this paper our methodology for designing, mapping methodology.

and implementing algorithms for SIMD-vector signal processors
with scalable level of parallelism. Taking as an example the II. SIMD COMPUTATIONAL MODEL

LMS, we show how an algorithm, which has been designed to . . .

exhibit a suitable level of data parallelism can be described by N figure 1 we observe a block diagram that illustrates a

these algebraic primitives. In turn, these algebraic primitives are high level model of a SIMD processor. The purpose of this
programmed in a matrix oriented language. A suitable compiler model is to abstract many details of the architecture and it is
generates object code for SIMD processors with a scalable not intended to be a detailed description of our STA processor
number of processing elements. cores.
The model mainly consists of a vector unit, a scalar unit and
an interconnection network. The model can deal with three
The advancement on VLSI technology has prompted rdifferent types of data: address data typescalar data type
newed attention onto SIMD-vector signal processors, sinceRtand vector data typ&. The vector data type consists of
enables the application of the SIMD computational model for elements ofR. The scalar unit operates onto data of type
low-power, high-performance programmable devices. Thusddress and data of type scalar. The vector unit deals with data
many ideas developed for supercomputers have reached dheype vector exclusively. Both the scalar and the vector unit
field of embedded signal processing upon the promise ledive their own register files and memory elements.
delivering to programmable devices the required processingThe scalar unit is intended to execute address computations
power at reasonable levels of power consumption and die sized scalar computations of the algorithm. This unit is fur-

In [1] and [2], we have presented a novel compiler friendlgished with the usual operations like addition, multiplication,
microarchitecture called Synchronous Transfer Architecturigiht and left shift, bitwise and, bitwise or, bitwise not, bitwise
STA, which offers scalable parallelism at the instruction anxbr, modulo, etc. The vector unit contains enough processing
at the data level. In this paper we only address the problesiements to manipulate vectors of elements. This unit is
of exploiting SIMD data level parallelism for our family of furnished with the same operations of the scalar unit but it
STA processor cores. Readers interested on instruction legpkrates on vectors. Thus, this unit executes componentwise
parallelism are referred to [3]. addition, multiplication, right and left shift, and, or, xor, etc.

The classical vectorization of algorithms for SIMD archiThe interconnection network supports different vector data
tectures is based on automatic loop vectorization. Hereltsansfers and the transfer of data between the scalar and the
algorithms are represented as sequential programs consistiagtor unit. Among the vector data transfers we can mention
of loops. Then, data dependence is established by searchiagtor right and left shift and stride permutations. Scalar data
on the space spanned by the loop indexes. Direct applicatian be transferred to the vector unit either via broadcast
of loop vectorization to algorithms, which are serial in naturgansfer, or by forming a base vector éh weighted with
might lead to modest speedup factors. This is especially traescalar value. Finally, an element of a vector residing on
for the LMS, where data is processed in serial fashion duettee interconnection network can be selected in order to be
direct data dependence in the computation of the coefficiemsnipulated by the scalar unit.
update_. . A. Algebraic Primitives

In this paper we present a methodology for the implemen- s S)) _
tation of signal processing algorithms into our family of STA Davio [4] in his classical paper established the connection

processor cores. Our methodology is based on three stepsP€tween theKronecker product of matrices and stride per-
: . mutations. In his paper he proved the importaotmmutation
1) Algorithm Design

2) Algorithm Mapping theoremof Kronecker products

3) Algorithm Implementation and Code Generation A®B=P(mamp,ma) (B® AP (nang,ng),

I. INTRODUCTION

SCALAR UNIT

Sealty Beo- Vector Reg. l Vector Memory scalar addition c=a+b
“" <[ME] ‘ scalar subtraction c=a-—0»
: ¢ scalar multiplication c=axb
g bitwise shift ¢ = bitshift(a,b)
<—> VECTOR UNIT

!

Scalar vector addition v =vy +v
Unit Vector Unit T =1 =2 =3
vector substraction V| = Vg — Vg
vector componentwise multiplication V| = Uy * Vg
™ Interconnection Network INTERCONNECTION

broadcast v=a® I,
Fig. 1. SIMD organization vector shift upwards v = (Zy)' vy
vector shift downwards v, = (27 ‘v,
vector construction from scalar v =a.el
. . . R T
where P(L, s) is a matrix that represents the permutation of scalar selection from vector a=(e)) v
. . . . Stride Permutation v, = P(v, s)u,
L elements with stride and A ® B is a matrix known as the
Kronecker product of thex 4 x n4 matrix A and themg xng TABLE |
matrix B that is defined as follows: ALGEBRAIC PRIMITIVES
(LoﬁoB ao’nAle
A B aLUB al’nAle
®o= : : ‘ important operations are the selection of a scalar from a vector
B B and the construction of a vector from scalars. In our framework
Gm 4 —1,0 cee Oma—1ma—1

this is supported by!, which represents a base vector ¥n

Later, Tolimieri [5] makes the observation that different modrhe most used algebraic primitives are summarized in table I.

els of parallel computation can be described by means of

Kronecker products. More recently, in [6] these ideas were [Il. PARALLEL LMS ALGORITHM DESIGN

extended to automate the generation of Fast Fourier Transtn this section we present a parallel formulation of the LMS

forms for SIMD processors. algorithm as derived in [7]. The starting point is the serial
In order to characterize the SIMD computational model legpresentation, which is given by:

A be anm xn matrix,z avn x 1 vector,y avm x 1 vector, 1,

the v x v identity matrix and consider the following important e(k) = d(k) —u" (k)u(k), 3)
expression: wk+1) = w(k)+ pe(k)u(k), 4)
y = (A®l)z. (1) where p is the adaption factord(k) is the desired filter
output, is th ignal, th 1 t f fil-
Equation (1) is known as a Kronecker vector factor, since f?ér ch:)efi(cu)anltssw ?k)eior[w?(%awz (]:)p . wv(ec)}o rar? d tL e
its computation only vectors if¥ are manipulated. This is elay chain of the filter formed by the |r11?put samples is
better illustrated if we partition the input and output vectorg (k) = [u(k), ulk —1),...,u(k —p+1)]. In the following

and using Matlab syntax we defing = x(ql,’ Hortv=1)) € e considep/v = M andM = 1,2, The LMS algorithm
Vforg=01....n-1andy =y(v:(w+v-1)€cV expressed as in equations (3)(4) processes the input data

fﬁr if:”071_72’_ ;m — 1. Then, we can write for equation Min serial fashion and therefore, it is not suitable for the
fthe Tollowing: n—1 implementation into SIMD-vector processors. Our purpose is
y = Z(ai ®1,)z,. @ to derive a formulation of the algorithm that process the input
I ! a data as vectors af elements. Such a vector processing for-
. . ulation of recursive algorithms can be derived via lookahead
Equations (1) and (2) capture the SIMD computation mOdéEchnique [8]. In fact, applying’ times lookahead to equa-
Further we assume for the level of SIMD parallelism tions (3)(4) and after some algebraic manipulations we can
v=2" fory=1,2,3,... derive the following equations for the LMS computation [7]:
Recalling our model of figure 1, we observe that equa- e(k) = G(k)|dk)-Uk)wk—-v+1)|, (5)

tion (2) can be efficiently implemented if the coefficients T
a; 4 € R are stored in scalar memory, then these coefficients (k+1) = wlk—v+1)+uU" (ke(k), (©)
are broadcasted. The resulting vector is componentwise migheree” (k) = [e(k — v+ 1),...,e(k — 1),e(k)] € V is the
tiplied by the vectorz, and accumulated. Aften iterations error vector,d” (k) = [d(k — v+ 1),...,d(k — 1),d(k)] € V
we obtainy . is the desired vector at the output of the block fille¥ (k) =

In order to support a larger family of algorithms, Weu(k—v+1),...,u(k—1),u(k)] is thep x v matrix formed by
have introduced other data transfer operators. For instangedelay chalns The computation of the block filter is given
(Z,)" describes a downwards vector shift byositions and by U(k)w(k — v + 1). G(k) is the v x v error correcting
(V) describes an upwards vector shift bpositions. Other matrix and can be regarded as the overhead introduced by

the lookahead transformation. The overhead matrix can be =

computed asG (k) = (I, + S(k)) ', where oalf 1 o Bimss
e i; - .- BLMS16
0 0 0 =
si(k—v+2) 0 0 o3 i
wos ! i,
so(k—v+3) si(k—v+3) = oz
S(k) = . . 0.15 :‘
0.1 ‘:
: : 0.05 :]
su-1(k) su—2(k) si(k) 0 O 2000 2000 6000 8000
(7) Iterations

The entries of this matrix are;(k) = pu” (k)u(k — 7). Thus,

i ; i ig. 2. Error curves for an adaptive filter with 128 coefficients and adaption
equa_nons (5)(6) descrlbe a bloqk formulation o_f the LM%ctor;L = 0.01 for the LMS, BLMS4 and BLMS16.
algorithm that process input data in a vector fashion.

A. Interim Discussion) .)
_ _ _ .. we can compare the error curves for different approximations
The overhead matri (k) is a lower triangular matrix with o the overhead matrix with the error curve of the original

ones on its main dir?lgonal. This matrix has to be COmpu“‘_a;ﬂjgorithm. For the formulation of the algorithm with = 4
every time a new input vector is processed. The mattffe have used only three diagonals of the overhead matrix
entries of the lower subdiagonals of this matrix are computeel..- 4 of four. For the case — 16. we considered only
using the entries; (k) of S(k). Hence, the number of scalarg, - giagonals. For the error curves shown we have passed
operations increases with the level of parallelsnMoreover, - jineary independent symbols through an ISI channel. As we
the number of scalar operations for computing the entrigs, opserve from the figure, the number of scalar operations

si(k) increases with the number of filter coefficieptsThus, .., he dramatically reduced at expenses of marginal changes
for large values ofv and p the algorithm spends a lot of . ha performance of the algorithm

time computing scalar operations in order to calculate the
overhead matrix. However, the number of scalar operations|V. MAPPING THE PARALLEL LMS INTO ALGEBRAIC
can be dramatically decreased by means of two approaches. PRIMITIVES

On the one hand, it is important to note that the elements|, s section we express the parallel computation of the
of the first column ofS(k) in terms of the elements of the| \1g aigorithm in terms of the algebraic primitives presented
last row that were computed during the previous block can B¢ section 11, The algorithm as presented in equations (5)(6)
recursively computed as follows: has three stages: block filtering and error computation, com-

si(k—v+i+1) putation of the overhead matrix and error correction, and

coefficients update.

=si(k—v) +p Z“(k —v4i—j+1) In the following we assume that the length of the training
=0 sequence satisfie/v = J andJ = 1,2,3,.... Thus, the
culk —v—j+1) input samples to be processed by the algorithm are collected
. (8) inavectoru = [u(k),u(k+1),...,u(k+L—-1)]". Likewise,
B Z“(k —p—v4i—j+1) we can defing the vector of filter output samplesnd the
= vector collecting the training sequendeln order to process

the input data in vector fashion, we partitiahand construct

w; = [u(k+vi),u(k+vi+1),...,ulk+vj+v-1)]" eV

for 0 < j < J, otherwise this is a vector with zero elements.
Likewise, we can partitiory andd and we formy . and d;.
q’he block filter can be formulated by means of the algebraic
primitives as follows:

culk—p—v—j+1)

)

fori =1,...,v — 1. For the entries of the subdiagonals w
can write:

si(k+1) =s;(k) + p[u(k + Du(k —i+1)

. ©) p-!
_ u(k —p+ l)u(k —1—p-+ 1)] yj _ Z(wq ® Iz/) . [(ZV)(q) mOdU@jfLiJ"‘
Thus, the number of scalar operations for computing the 9=0 (10)

entries ofS(k) becomes independent of the number of filter
coefficientsp.

On the other hand, the number of scalar operations cahere mod is the modulo operator andlis the floor operator.
be alleviated if the error correcting matrix is relaxed. Thighe error vector can be computed as- Y, —d; eV.
influences the performance of the algorithm according to theFor calculating the error correction matrix we use equa-
autocorrelation characteristics of the input signal. In figure #ions (8)(9) for computing the scalar values of the matrix

(Zg)(D7Q) mod VQj—l—I_%j ,

about data level parallelism. Further stages of this compiler ex-
ploits instruction level parallelism and deals with architecture
el dependent issues like for example register allocation.

The LMS algorithm was programmed in Octave once and

code was generated for STA cores with different levels of

w000 | parallelismy. The code was run in cycle accurate processor
0 models at the register transfer level. If figure 3 we can observe

104 200 304 400 504 600 /
Nomber of Fiter Coefficients the number of cycles per sample for the case 4, v/ = 3
(BLMS4) and v 8, v = 4 (BLMSB8). For comparison
Fig. 3. Number of cycles per sample for the LMS algorithm computepurposes a serial implementation of the algorithm, which was
serially, computed in a SIMD processor with = 4 and computed in a entirely computed on the scalar unit of the processor is pre-
SIMD processor withv = 8. .. .

sented. The code for this implementation was also generated

using our compiler, yet the Octave code was written using the

entries. We can use these scalar values to form the vectors §fiina! serial mathematical formulation of the algorithm. As
build the x +/ relaxed correction matriG’, where/ is the We can observe, important speed up factors are achieved.

number of diagonals taken from the original matrix. Moreover,
the chosen diagonals d&(k) are stored inG’ as columns

completed with zeros if necessary. Thus, for the computati
of the error correction and using Matlab syntax we can writ

v'—1
=Y G'(q) *e

q=0

35000
30000 -

25000

—e—serial LMS
—e—BLMS8
—A—BLMS4

20000 -

15000 -

Cycles per Sample

10000 -

VI. CONCLUSION AND FUTURE WORK

Many state of the art code optimization techniques are yet
?Qn be implemented in our compiler infrastructure. We expect
fhat these techniques will improve the code quality and we
will reduce the number of cycles per sample in at least one
order of magnitude. In future publications we will report about
these efforts.

for ¢/ € V. This completes the computation of a relaxed The model presented in section A provides an abstraction

version of equation (5). For the computation of equation (§yStem that describes the functionality of a SIMD-vector
we need the following result: processor. In order to find a mapping between an algorithm

and the architecture, we have introduced primitive algebraic
constructions, which enables a mathematical formulation tak-
ing into account architectural features of the processor. The
algebraic constructions are primitive in the sense that they are
general enough to enable the formulation of a large family
of algorithms. Moreover, the algebraic primitives determine
transformation rules for the synthesis of code that exploit the
features they describe. In this paper we have presented this
approach taking as example the LMS algorithm.

11)

/"
€

(2,) 0wy q)+ (12)

ZT (v—q) modv !
(Z,) Uj1-12]] &>
for 0 < ¢ < p— 1. Adding ther elements of the resulting
vector we obtain:

(13)

REFERENCES

G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Syn-
chronous transfer architecture (STA),” lrecture Notes on Computer
ScienceS. Vassiliadis, Ed. Berlin, Germany: Springer-Verlag, July 2004,
to be published.

P. Robelly, G. Cichon, H. Seidel, M. Bronzel, and G. Fettweis, “A
hw/sw design methodology for embedded simd vector signal processors,”
International Journal of Embedded Systems |JE&huary 2005, to be

It is important to note that is a vector ofp elements. How-
ever, loading’ elements of this vectar (mv : (m—+1)(v—1)),
for 0 < m < M results in vectors iV and we can write for
the coefficients update the following equation

w(my: (m+1)(v—1)) =w(mv: (m+1)(v—1))

(1]

(2]

+(pel)
z(mv: (m+1)(v—1)) [3]
This completes the computation of the algorithm using the

algebraic primitives that describes the SIMD computational
model of section II. [4

(14)

5
V. CODE GENERATION AND RESULTS g

Algorithms expressed as in equations (10)-(14) can be eaéﬁ{/
programmed using a matrix oriented language like Matlab or
Octave. In [2][3] we presented a compiler infrastructure, whidHl
process programs written in Matlab or Octave. One stage of

G
1 M

published.

G. Cichon, P. Robelly, H. Seidel, M. Bronzel, and G. Fettweis, “Compiler
scheduling for STA processors,” In Proc. International Conference on
Parallel Computing in Electrical Engineering PARELEC 2004. Dresden,
ermany, pp. 45-50, Sept. 2004.

. Davio, “Kronecker products and shuffle algebré8EE Trans. on
Computersvol. C-30, no. 2, pp. 116-125, Feb. 1981.

R. Tolimieri, M. An, and C. LuAlgorithms for discrete Fourier transform
and convolution New York: Springer Verlag, 1997.

F. Franchetti and M. Pueschel, “A simd vectorizing compiler for digital
signal processing algorithms,” In Proc. International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 20-26, 2002.

J. Benesty and P. Duhamel, “A fast exact least means square adaptive
algorithm,” IEEE trans. on SPR.vol. 40, no. 12, pp. 2904-2990, Dec.

the compiler features pattern matching and uses the algebrgjcc. Fettweis and L. Thiele, “Algebraic recurrence transformations for

primitives in order to establish the rules for the generation of a
medium intermediate representation that contains information

massive parallelism,” irProceedings of the IEEE Workshop on VLSI
Signal ProcessingNapa, California, October 1992, pp. 332-341.

