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ABSTRACT

Supervised adaptive system training is traditionally performed 

with available pairs of input-output data and the system weights 

are fixed following this training procedure. Recently, in the 

context of machine learning, where the desired outputs are

discrete-valued, the idea of exploiting unlabeled samples for 

improving classification performance has been proposed. In this 

paper, we introduce an information theoretic framework based on 

density divergence minimization to obtain extended training 

algorithms. Our goal is to provide a theoretical framework upon 

which we can build efficient algorithms to this end. 

1. INTRODUCTION

Traditionally system identification and nonlinear regression

have been approached in a supervised learning framework where 

different optimality criteria are utilized based on the statistics of

the error between the adaptive system output and the desired

output values [1-3]. All labeled pairs of available data are used in 

determining the optimal weights (typically by splitting this data

to training and testing sets) and no further optimization is carried

out over the unlabeled data samples in the actual application 

phase.1

This approach has been deemed quite natural by everyone;

after all, how could you use an input sample for training further

an adaptive system if you did not know what output it should 

produce?2 Only recently, in the machine learning literature the 

concept of making use of unlabeled data in supervised learning 

to enhance classifier performance has been addressed. This is due

to the fact that in pattern recognition, labeled samples are much

more expensive to collect compared to unlabeled feature vectors.

The most prominent approach is to use the well-known EM 

algorithm in a maximum likelihood framework [4,5]. Another 

interesting approach utilizes the representer theorem in the 

context of regularization to exploit the unlabeled data for 

smoother function approximation [6].

1 Throughout this paper, labeled data pairs are those that are 

available in the form (x,y) where x denotes the input sample and y

is the corresponding desired output value. All unlabeled data

consists only of x values for which the corresponding output 

values are not specified or unknown. 
2 We are concerned about supervised learning, where a function 

approximator is optimized. Unsupervised learning, which is 

based on training from only input samples is not being addressed 

here.

The purpose of this paper is to create a theoretical framework

that allows the training of adaptive systems in supervised

learning settings, using both labeled and unlabeled data. Under 

this framework, one can continue to train a system even after

supervised training is completed. To this end, information

theoretic approaches will be considered at a theoretical level and 

for some possible criteria, connections to existing methods will 

be pointed out. For illustration purposes, a special case of the 

proposed framework will also be studied. 

2. PROBLEM DEFINITION

Consider the function approximation problem. For 

convenience assume that independent and identically distributed 

(iid) input-output data {(x1,d1),…,(xT,dT)} are available from an 

unknown nonlinear function as follows:3

nfd )(x (1)

The observed output (desired response) d is called the label of the 

input x, borrowing the terminology from pattern recognition. In

function approximation, the labels are continuous-valued and 

corrupted by noise.4

An adaptive system with input x, output y, and weights w is 

used to approximate f:

 ),( wxgy (2)

The adaptive system could be linear filter (y=wTx), a neural 

network, or any other topology whose coefficients need to be 

optimized for a specific task. In supervised learning, the

optimization is carried out by minimizing or maximizing an

optimality criterion. The usual choice of this criterion is MSE

[1,2], however alternative selections such as minimum error

entropy (MEE) [7] or the -insensitive loss function [8] are also 

possible and equally valid. The error is defined as the difference 

3 In some cases, the input and noise samples could be correlated

violating the independence assumption. For the sake of argument, 

we assume independence at this point. 
4 For convenience a single output system is considered here, but 

the ideas generalize to multidimensional systems.
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between the available desired output and the output generated by

the adaptive system for a specific input: e=d-y. For future use we 

define the following variables: 

),()(~)(
~

wxxx gfefd (3)

Furthermore, we assume that the input vector is a random

variable X with an unknown probability density function (pdf) 

pX(.), the measurement noise N has an unknown pdf pN(.). The 

variables X and N are independent from each other. 

In the training phase, an approximation to f could be 

obtained by minimizing the error (using any viable criterion). In

the application phase, where the trained network is utilized on

novel input data {xT+1,…,xK}, the weights determined in the 

training phase are fixed. The following question is to be

answered: How do we continue to update the weights of the 

adaptive network in the application phase?

3. AN INFORMATION THEORETIC APPROACH

Suppose that we have a data set {(x1,d1),…,(xT,dT)}

{xT+1,…,xK}. The data is collected as described in the previous

section and an adaptive topology g(.,w) is to be optimized.

3.1. Joint Distribution Based Criteria

Consider the joint distribution of the input-desired data: 

 (4) )())(()()|(),( | xxxxx XXXX pfdppdpdp NDD

The substitution for the conditional density is based on (1). The 

distributions in (4) will be estimated from available data

whenever appropriate. Specifically, we can use

{(x1,d1),…,(xT,dT)} to estimate pDX(d,x) and {x1,…,xK} to 

estimate pX(x). In other words, the unlabeled data that is acquired

in the application phase can be used to continually update our

estimate for the input distribution. 

A natural information theoretic approach is to minimize the 

Kullback-Leibler (KL) divergence [9] between the estimates of 

both sides of (4) based on the available data. We propose 

minimizing  with 

respect to w. With a change of variables, it can be shown that this 

corresponds to minimizing the following expression: 
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The first and second terms are the entropies of the noise and the 

input. Therefore, they are constant (under the iid assumption), 

hence are independent of w. Consequently, it suffices to solve the 

following to minimize the KL divergence between the two

distributions:

)),((logmin | XXXXX
w

fNpEE DN (6)

It is important to note that the final form of the optimization

problem in (6) has been targeted from the beginning, in order to

eventually facilitate a stochastic-gradient approach to the training 

of adaptive systems in application phase. By arriving at a

criterion that is expressed as the expectation over X, we can 

design an extended-learning algorithm that utilizes the incoming

samples {xT+1,…,xK} in an on-line fashion for sample-by-sample

updates that still converge in-the-mean to the desired solution. 

In a more general framework, one can minimize various 

definitions of the divergence/distance between the estimates of 

the distributions on two sides of the equality in (4). Possibilities

include Csiszar divergence, Renyi’s -divergence, Euclidean 

distance, and angular distance (also called Cauchy-Schwartz

distance) [10].5 For example, Renyi’s -divergence leads to the 

following optimization criterion: 
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Due to L’Hopital’s rule, in the limit as 1, (7) approaches (5). 

Note that if the noise and input distributions are known, then 

(6) corresponds to a maximum likelihood solution. The 

generalized version in (7) allows us to manipulate the free 

parameter  to select how to emphasize denser and sparser

regions in the joint XN probability space in the optimization. We

have seen that =1 corresponds to maximum likelihood. Larger

 will emphasize dense regions more while smaller  will 

emphasize sparse regions. This plays a critical role when the

input distribution is not uniform over the domain of the function. 

Unfortunately, in most realistic situations, the noise 

distribution is unknown, therefore it needs to be estimated or 

approximated. We propose to use the error distribution as an 

approximation to that of the noise. Due to the independence of X

and N, we have 

 )(*),(),( ~ NEE ppp ww  (8) 

For a general divergence measure (such as (5) and (7), this 

approximation leads to the following problem: 

 (9) ))),,((||)()),((min xwxxw XX
w

geppepD DE

Fact 1. The divergence measure in (9) becomes zero if and only

if f(x)=g(x,w) for all x in the support of pX(.).6

Proof. If f(x)=g(x,w) for all x in the support of pX(.), then pE(.)

becomes identical to pN(.), since  reduces to a Dirac-

distribution. Due to this and (4), the divergence in (9) becomes 

zero. Conversely, if the divergence in (9) is zero, then the two

distributions in the argument are identical over the support of the

distribution p

(.)~
E

p

DX. Therefore, it is easy to see that for all possible

(d,x) values pE(d-g(x,w))=pN(d-f(x)). Substituting the right hand 

side of (8) for the error distribution, we have 

 (10) 
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E

. Thus, f(x)=g(x,w)

for all x in the support of pX(.).

5 Definitions of these measures are in the appendix.
6 In general, it is unlikely that there exists a w* such that 

f(.)=g(.,w*). However, the point of this fact is to validate the use

of a divergence criterion if it was possible to access the true

underlying function, and not to address what happens due to the 

shortcomings of the approximation topology.
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Fact 1 validates the minimization of a divergence measure

as shown in (9) for function approximation. The minimization of 

such a divergence to zero is necessary and sufficient for exact

function approximation. Unfortunately, in practice, achieving a 

zero divergence is not always possible. In general, the unknown 

function f(.) may not be a member of the parametric family of

functions spanned by g(.,w). In that case, minimizing a

divergence will yield the projection of f onto the manifold where 

the family of functions g(.,w) lie, wherein the projection itself is

determined by the divergence measure utilized.

3.2. Marginal Distribution Based Criteria 

The approach presented above, which is based on the joint

distribution of the input and desired output variables, will

typically be prone to the difficulties associated with the curse of 

dimensionality. For problems with large input dimensionality,

estimating the joint distribution pDX(d,x) from the available 

labeled training data will become exponentially harder. In order

to avoid such difficulties, we can resort to measures that do not 

consider the input distribution explicitly.

Before continuing further, consider the distribution of the 

desired output and the adaptive system output error. Due to the

independence assumptions, the following identities hold. 
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If the adaptive system function matches the true function f

perfectly, then the output distribution pY(.) becomes identical to 

. However, the latter distribution is not available in 

practice. Consequently, similar to the previous section, we can 

employ various divergence measures to match p

(.)~
D

p

Y(.)*pN(.) to 

pD(.). Once again, assuming that the error distribution

approximates the noise distribution, the following divergence

must be minimized:

))(||),(*),((min DEY pppD ww
w

 (12) 

Similar to the reasoning in Fact 1, we can show that (12)

becomes zero if and only if g(x,w)=f(x) for all x in the support of 

pX(.). Hence, minimizing (12) is necessary and sufficient for 

exact function matching. The same argument about f being a 

member of the function family g can be reiterated here. 

4. ALGORITHMIC POSSIBILITIES

For illustration, we consider the minimization of KL

divergence formulated in (6). First, an estimate of the joint

distribution pDX(d,x) must be obtained using the labeled portion

of the data set {(x1,d1),…,(xT,dT)}. This could be achieved by

parametric or nonparametric approaches. 

The parametric approach involves assuming a specific 

structure for the distribution in terms of a prespecified family of 

distributions, such as exponential or mixture models. An

exponential distribution assumption leads to a simple overall 

criterion. For example, if we assume that the distributions of 

interest are of the form

 (13) )),(exp()(),,(exp),( xxX erepdqdp ED

where q(d,x, ) is a polynomial function of (d,x) with coefficients

, and r(e, ) is a polynomial over e, minimization of the KL 

divergence in accordance with (9) becomes

 (14) 
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The criterion is a combination of error entropy and maximum 

likelihood terms, and with the exponential density assumptions, it 

simply consists of the moments of the error and joint moments of

the input variables. The coefficients of the polynomials can be

estimated using the maximum likelihood principle or alternative

analytical solutions such as Jaynes’ maximum entropy principle

[11,12]. Furthermore, in the application phase, the second term

can be approximately optimized using a stochastic gradient 

approach where each new unlabeled input sample is utilized for a 

single-sample update. Additional complexity reduction could be 

achieved by also making the expectation over E stochastic. Just 

for illustration purposes, if these polynomials are quadratic 

(leading to the unrealistic Gaussian distribution assumption) 

and sample means over available data are used to approximate 

the expectations, the extended-learning criterion in (14) becomes 
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Notice that the error samples are evaluated using the labeled data

using the most recent weight values and the expectation over X is

evaluated using all available input data (labeled and unlabeled). 

In practice, the second term could be approximated stochastically

using only the most recent (unlabeled) input sample xk to 

approximate the sample average over K samples {x1,…,xK}.

The nonparametric approach can be implemented using a

Parzen window estimate for the distributions (also called as 

kernel density estimates) [13,14]. Using appropriate kernel 

functions K(.), the densities are approximated by

T
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where dt, xt, and et are evaluated over the labeled data pairs 

(training set). In this case, the KL divergence criterion, in 

accordance with resubstitution estimates of information theoretic 

measures [10,15], is given in (18). As in the parametric case,

computational complexity could be reduced by resorting to 

stochastic gradients. The stochastic gradient for information

theoretic measures using the kernel resubstitution estimates has

been studied earlier [16].
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5. DISCUSSION

In this paper, we have discussed the feasibility of training 

adaptive systems using unlabeled input data in the application

phase. Traditional adaptive systems theory optimizes the weights

of the neural network by minimizing an error function evaluated 

over a labeled training set, where corresponding output values for

specific inputs are available. The trained network is then applied 

to novel data (which we call the application phase) and no

training of filter coefficients is performed at this stage.

Specifically, we have investigated some information theoretic 

possibilities as the criterion for training in the application phase. 

This adaptation process during actual application is called 

extended supervised learning, and is essentially unsupervised. 

However, the criteria for extended supervised learning have been

carefully designed to extract the most possible information from

the labeled data (training set), as well as the unlabeled data. 

The discussion here has been mostly theoretical, while some

hints on how to implement these ideas in a practical learning

system have been provided. Both parametric and nonparametric 

statistical approaches have been considered for a feasible

implementation and at this point they both seem to be equally

viable. However, the performance of these possible

implementations as well as different divergence definitions are 

not studied here due to lack of space. These details will be visited 

in a future paper. 
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APPENDIX

A wide range of possibilities exists for density divergences

that could be used in this framework. We list a few of them.
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log))(||)((Cauchy

))()(())(||)((Euclidean
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2/1
22

2

1

11

Renyi’s divergence becomes KL divergence in the limit as 1

[17].  In Csiszar divergence, h is a convex function with h(1)=0

[18]. If h(.)=-log(.), then we obtain the KL divergence. Euclidean 

and Cauchy measures are distances drawn from the linear algebra 

of function spaces [19].
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