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Abstract

Dimensionality reduction is a topic of recent interest. In this paper, we present the classification

constrained dimensionality reduction (CCDR) algorithm toaccount for label information. The algorithm

can account for multiple classes as well as the semi-supervised setting. We present an out-of-sample

expressions for both labeled and unlabeled data. For unlabeled data, we introduce a method of embedding

a new point as preprocessing to a classifier. For labeled data, we introduce a method that improves the

embedding during the training phase using the out-of-sample extension. We investigate classification

performance using the CCDR algorithm on hyper-spectral satellite imagery data. We demonstrate

the performance gain for both local and global classifiers and demonstrate a10% improvement of

the k-nearest neighbors algorithm performance. We present a connection between intrinsic dimension

estimation and the optimal embedding dimension obtained using the CCDR algorithm.
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Classification Constrained Dimensionality

Reduction

I. INTRODUCTION

In classification theory, the main goal is to find a mapping from an observation spaceX

consisting of a collection of points in some containing Euclidean spaceRd, d ≥ 1 into a set

consisting of several different integer valued hypotheses. In some problems, the observations from

the setX lie on ad-dimensional manifoldM and Whitney’s theorem tells us that provided that

this manifold is smooth enough, there exists an embedding ofM into R
2d+1. This motivates the

approach taken by kernel methods in classification theory, such as support vector machines [1]

for example. Our interest is in finding an embedding ofM into a lower dimensional Euclidean

space.
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Fig. 1. PCA of a two-classes classification problem.

Dimensionality reduction of high dimensional data, was addressed in classical methods such

as principal component analysis (PCA) [2] and multidimensional scaling (MDS) [3], [4]. In PCA,

an eigendecomposition of thed×d empirical covariance matrix is performed and the data points

are linearly projected along the0 < m ≤ d eigenvectors with the largest eigenvalues. A problem

that may occur with PCA for classification is demonstrated inFig. 1. When the information

that is relevant for classification is present only in the eigenvectors associated with the small

eigenvalues (e2 in the figure), removal of such eigenvectors may result in severe degradation
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in classification performance. In MDS, the goal is to find a lower dimensional embedding of

the original data points that preserves the relative distances between all the data points. The

two later methods suffer greatly when the manifold is nonlinear. For example, PCA will not be

able to offer dimensionality reduction for classification of two classes lying each on one of two

concentric circles.

In [5], a nonlinear extension to PCA is presented. The algorithm is based on the “kernel trick”

[6]. Data points are nonlinearly mapped into a feature space, which in general has a higher (or

even infinite) dimension as compared with the original spaceand then PCA is applied to the

high dimensional data.

In the paper of Tenenbaumet al [7], Isomap, a global dimensionality reduction algorithm

was introduced taking into account the fact that data pointsmay lie on a lower dimensional

manifold. Unlike MDS, geodesic distances (distances that are measured along the manifold)

are preserved by Isomap. Isomap utilizes the classical MDS algorithm, but instead of using the

matrix of Euclidean distances, it uses a modified version of it. Each point is connected only

to points in its local neighborhood. A distance between a point and another point outside its

local neighborhood is replaced with the sum of distances along the shortest path in graph. This

procedure modifies the squared distances matrix replacing Euclidian with geodesic distances.

In [8], Belkin and Niyogi present a related Laplacian eigenmap dimensionality reduction

algorithm. The algorithm performs a minimization on the weighted sum of squared-distances

of the lower-dimensional data. Each weight multiplying thesquared-distances of two low-

dimensional data points is inversely related to distance between the corresponding two high-

dimensional data points. Therefore, small distance between two high-dimensional data points

results in small distance between two low-dimensional datapoints. To preserve the geodesic

distances, the weight of the distance between two points that do not share a local neighborhood

is set to zero.

We refer the interested reader to the references below and those cited therein for a list of

some of the most commonly used additional algorithms withinthe class ofmanifold learning

algorithms and their different advantages relevent to our work. Locally Linear Embedding (LLE)

[9], Laplacian Eigenmaps [8], Hessian Eigenmaps (HLLE) [10], Local Space Tangent Analysis

[11], Diffusion Maps [12] and Semidefinite Embedding (SDE) [13].

The algorithms mentioned above, consider the problem of learning a lower-dimensional em-

October 31, 2018 DRAFT



3

bedding of the data. In classification, such algorithms can be used to preprocess high-dimensional

data before performing the classification. This could potentially allow for a lower computational

complexity of the classifier. In some cases, dimensionalityreduction results increase the computa-

tional complexity of the classifier. In fact, support vectormachines suggest the opposing strategy:

data points are projected onto a higher-dimensional space and classified by a low computational

complexity classifier. To guarantee a low computational complexity of the classifier of the low-

dimensional data, a classification constrained dimensionality reduction (CCDR) algorithm was

introduced in [14]. The CCDR algorithm is an extension of Laplacian eigenmaps [8] and it

incorporates class label information into the cost function, reducing the distance between points

with similar label. Another algorithm that incorporates label information is the marginal fisher

analysis (MFA) [15], in which a constraint on the margin between classes is used to enforce

class separation.

In [14] the CCDR algorithm was only studied for two classes and its performance was

illustrated for simulated data. In [16], a multi-class extension to the problem was presented. In this

paper, we introduce two additional components that make thealgorithm computationally viable.

The first is an out-of-sample extension for classification ofunlabeled test points. Similarly to the

out-of-sample extension presented in [17], one can utilizethe Nyström formula for classification

problems in which label information is available. We study the algorithm performance as its

various parameters, (e.g., dimension, label importance, and local neighborhood), are varied. We

study the performance of CCDR as preprocessing prior to implementation of several classi-

fication algorithms such ask-nearest neighbors, linear classification, and neural networks. We

demonstrate a10% improvement over thek-nearest neighbors algorithm performance benchmark

for this dataset. We address the issue of dimension estimation and its effect on classification

performance.

The organization of this paper is as follows. Section III presents the multiple-class CCDR

algorithm. Section?? provides a study of the algorithm using the Landsat dataset and Section

VI summaries our results.

II. D IMENSIONALITY REDUCTION

Let Xn = {x1,x2, . . . ,xn} be a set ofn points constrained to lie on anm-dimensional

submanifoldM ⊆ R
d. In dimensionality reduction, our goal is to obtain a lower-dimensional
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embeddingYn = {y1,y2, . . . ,yn} (whereyi ∈ R
m with m < d) that preserves local geometry

information such that processing of the lower dimensional embeddingYn yields comparable

performance to processing of the original data pointsXn. Alternatively, we would like learn

the mappingf : M ⊆ R
d → R

m that maps every data pointxi to yi = f(xi) such that

some geometric properties of the high-dimensional data arepreserved in the lower dimensional

embedding. The first question that comes to mind is how to select f , or more specifically how

to restrict the functionf so that we can still achieve our goal.

A. Linear dimensionality reduction

1) PCA: When principal component analysis (PCA) is used for dimensionality reduction, one

considers a linear embedding of the form

yi = f(xi) = Axi,

whereA is m × d. This embedding captures the notion of proximity in the sense that close

points in the high dimensional space map to close points in the lower dimensional embedding,

i.e., ‖yi − yj‖ = ‖A(xi − xj)‖ ≤ ‖A‖‖xi − xj‖. Let

x̄ =
1

n

n
∑

i=1

xi

and

Cx =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)T .

Similarly, let

ȳ =
1

n

n
∑

i=1

yi

and

Cy =
1

n

n
∑

i=1

(yi − ȳ)(yi − ȳ)T .

Sinceyi = Axi, we haveȳ = Ax̄ andCy = ACxA
T . In PCA, the goal is to find the projection

matrix A that preserves most of the energy in the original data by solving

max
A

tr{Cy(A)} s.t. AAT = I,

which is equivalent to

max
A

tr{ACxA
T} s.t. AAT = I. (1)
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The solution to (1), is given byA = [u1,u2, . . . ,um]
T , whereui is the eigenvector ofCx

corresponding to itsith largest eigenvalue. When the data lies on anm-dimensional hyperplane,

the matrix Cx has onlym positive eigenvalues and the rest are zero. Furthermore, every xi

belongs tox̄ + span{u1,u2, . . . ,um} ⊆ R
d. In this case, the mapping PCA findsf(x) = Ax

is one-to-one and satisfies‖f(xi)− f(xj)‖ = ‖A(xi −xj)‖ = ‖xi −xj‖. Therefore, the lower

embedding preserves all the geometry information in the original datasetX . We would like to

point out that PCA can be written as

max
{Y}

n
∑

i=1

‖yi − yj‖
2 s.t. yi = Axi andAAT = I,

2) MDS: Multidimensional Scaling (MDS) differs from PCA in the way the input is provided

to it. While in PCA, the original dataX is provided, the classical MDS requires only the set

of all Euclidean pairwise distances{‖xi − xj‖2}
n−1
i=1,j>i. As MDS uses only pairwise distances,

the solution it finds is given up to translation and unitary transformation. Letx′
i = xi − c, the

Euclidean distance‖x′
i−x′

j‖ is the same as‖xi −xj‖. Let U be an arbitrary unitary matrixU

satisfyingUTU = I and definex′
i = Ux. The distance‖x′

i − x′
j‖ is equal to‖U(xi − xj)‖,

which by the invariance of the Euclidean norm to a unitary transformation equals to‖xi −xj‖.

Denote the pairwise squared-distance matrix by[D2]ij = ‖xi − xj‖
2. By the definition of

Euclidean distance, the matrixD2 satisfies

D2 = 1φT + φ1T − 2XTX, (2)

where X = [x1,x2, . . . ,xn] and φ = [‖x1‖
2, ‖x2‖

2, . . . , ‖xn‖
2]T . To verify (2), one can

examine theij-th term ofD2 and compare with‖xi − xj‖
2. Denote then × n matrix H =

I − 11
T /n. Multiplying both sides ofD2 with H in addition to a factor of−1

2
, yields

−
1

2
HD2H = (XH)T (XH),

which is key to MDS, i.e., Cholesky decomposition of−1
2
HD2H yieldsX to within a trans-

lation and a unitary transformation. Consider the eigendecomposition−1
2
HD2H = UΛUT .

Therefore, a rankd X can be obtained asX = Λ
1
2
dU

T
d , whereΛd = diag{[λ1, λ2, . . . , λd]}

1
2

andU d = [u1,u2, . . . ,ud]. Note thatXH is a translated version ofX, in which every column

xi is translated toxi − x̄.

To use MDS for dimensionality reduction, we can consider a two step process. First a square-

distance matrixD2 is obtained from the high-dimensional dataX . Then, MDS is applied toD2
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to obtain a low-dimensional (m < d) embedding byXm = Λ
1
2
mU

T
m = XUmU

T
m. In the absence

of noise, this procedure provides an affine transformation to the high-dimensional data and thus

can be regarded as a linear method.

B. Nonlinear dimensionality reduction

Linear maps are limited as they cannot preserve the geometryof nonlinear manifolds.

1) Kernel PCA: Kernel PCA is one of the first methods in dimensionality reduction of data

on nonlinear manifolds. The method combines the dimensionality reduction capabilities of PCA

on linear manifolds with a nonlinear embedding of data points in a higher (or even infinite)

dimensional space using “kernel trick” [6]. In PCA, one findsthe eigenvectors satisfying:Cxvk =

λkvk. Sincevk can be written as a linear combination of thexi’s: vk =
∑

i αki(xi − x̄), one

can replacevk in the eigendecomposition, simplify, and obtain:X(Kαk − λkαk) = 0, where

Kij = (xi − x̄)T (xj − x̄). Consider the mappingφ : M → H from the manifold to a Hilbert

space. The “kernel trick” suggests replacingxi with φ(xi) and therefore rewriting the kernel

asKij = φ(xi)
Tφ(xj). Further generalization can be made by settingKij = K(xi,xj) where

K(·, ·) is positive semidefinite. The resulting vectors are of the form vk =
∑

i αkiφ(xi) and

thus implementing a nonlinear embedding into a nonlinear manifold.

2) ISOMAP: In [7], Tenenbaumet al find a nonlinear embedding that rather than preserving

the Euclidean distance between points on a manifold, preserves the geodesic distance between

points on the manifold. Similar to MDS where a lower dimensional embedding is found to

preserve the Euclidean distances of high dimensional data,ISOMAP finds a lower dimensional

embedding that preserves the geodesic distances between high-dimensional data points.

3) Laplacian Eigenmaps:Belkin and Niyogi’s Laplacian eigenmaps dimensionality reduction

algorithm [8] takes a different approach. They consider a nonlinear mappingf that minimize

the Laplacian

arg min
‖f‖

L2(M)=1

∫

M

‖∇f‖2. (3)

Since the manifold is not available but only data point on it are, the lower dimensional embedding

is found by minimizing the graph Laplacian given by
n

∑

i=1

wij‖yi − yj‖
2, (4)
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wherewij is the ijth element of the adjacency matrix which is constructed as follows: For

k ∈ N, a k-nearest neighbors graph is constructed with the points inXn as the graph vertices.

Each pointxi is connected to itsk-nearest neighboring points. Note that it suffices that either

xi is amongxj ’s k-nearest neighbors orxj is amongxi’s k-nearest neighbors forxi andxj to

be connected. For a fixed scale parameterǫ > 0, the weight associated with the two pointsxi

andxj satisfies

wij =







exp {−‖xi − xj‖
2/ǫ} if xi andxj are connected

0 otherwise.

III. CLASSIFICATION CONSTRAINED DIMENSIONALITY REDUCTION

A. Statistical framework

To put the problem in a classification context, we consider the following model. LetXn =

{x1,x2, . . . ,xn} be a set ofn points sampled from anm-dimensional submanifoldM ⊆ R
d.

Each pointxi ∈ M is associate with a class labelci ∈ A = {0, 1, 2, . . . , L}, whereci = 0

corresponds to the case of unlabeled data. We assume that pairs (xi, ci) ∈ M×A are i.i.d. drawn

from a joint distribution

P (x, c) = px(x|c)Pc(c) = Pc(c|x)px(x), (5)

wherepx(x) > 0 andpx(x|c) > 0 (for x ∈ M) are the marginal and the conditional probability

density functions, respectively, satisfying
∫

M
px(x)dx = 1,

∫

M
px(x|c)dx = 1 andPc(c) > 0

andPc(c|x) > 0 are the a priori and a posteriori probability mass functionsof the class label,

respectively, satisfying
∑

c Pc(c) = 1 and
∑

c Pc(c|x) = 1. While we consider unlabeled points

of the form (xi, 0) similar labeled points, we still make the following distinction. Consider the

following mechanism for generating an unlabeled point. First, a class labelc ∈ {1, 2, . . . , L}

is generated from the labeled a priori probability mass function P ′
c(c) = P (c|c is labeled) =

Pc(c)/
∑L

c′=1 Pc(c
′). Thenxi is generated according topx(x|c). To treat c as an unobserved

label, we marginalizeP (x, c|c is labeled) = px(x|c)P
′
c(c) over c:

px(x|c = 0) =
L
∑

q=1

px(x|c = q)P ′
c(q) =

∑L

q=1 px(x|c = q)Pc(q)
∑L

c′=1 Pc(c′)
. (6)

This suggests that the conditional PDF of unlabeled pointsfx(x|c = 0) is uniquely determined by

the class priors and the conditionals for labeled point. We would like to point out that this is one
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of few treatments that can be offered for unlabeled point. For example, in anomaly detection,

one may want to associate the unlabeled point with contaminated data points, which can be

represented as a density mixture ofpx(x|c = 0) andγ(x) (e.g.,γ(x) is uniform inX ).

In classification constraint dimensionality reduction, our goal is to obtain a lower-dimensional

embeddingYn = {y1,y2, . . . ,yn} (whereyi ∈ R
m with m < d) that preserves local geometry

and that encourages clustering of points of the same class label. Alternatively, we would like

to find a mappingf (x, c) : M × A → R
m for which yi = f (xi, ci) that is smooth and that

clusters points of the same label.

We introduce the class label indicator for data pointxi ascki = I(ci = k), for k = 1, 2, . . . , L

and i = 1, 2, . . . , n. Note that when pointxi is unlabeledcki = 0 for all k. Using the class

indicator, we can write the number of point in classk asnk =
∑n

i=1 cki. If all points are labeled,

thenn =
∑L

k=1 nk.

B. Linear dimensionality reduction for classification

1) LDA: Restricting the discussion to linear maps, one can extend PCA to take into account

label information using the multi-class extension to Fisher’s linear discriminant analysis (LDA).

Instead of maximizing the data covariance matrix, LDA maximizes the ratio of the between-

class-covariance to within-class-covariance. In other words, we obtain a linear transformation

yi = f(xi, ci) = Axi with matrix A that is the solution to the following maximization:

max
A

tr{ACBA
T} s.t. ACWAT = I, (7)

where

CB =
1

n

L
∑

k=1

nk(x̄
(k) − x̄)(x̄(k) − x̄)T

is the between-class-covariance matrix,x̄(k) =
∑

i ckixi/nk is thekth class center,̄x =
∑

i xi/n

is the center point of the dataset,

CW =
1

n

L
∑

k=1

nkC
(k)
W ,

is the within-class-covariance, and

C
(k)
W =

∑n

i=1 cki(xi − x̄(k))(xi − x̄(k))T

nk

October 31, 2018 DRAFT
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is within-class-k covariance matrix. In Fig. 1, LDA selects an embedding that projects the

data ontoe2 since the maximum distance between classes is achieved along with a minimum

class variance when projecting the data ontoe2. We are interested in exploring a strategy that

maximizes class separation in the lower dimensional embedding.

2) Marginal Fisher Analysis:Recent work [15], presents the marginal Fisher analysis (MFA),

which is a method that minimizes the ratio between intraclass compactness and interclass

separability. In its basic formulation MFA is a linear embedding, in whichyi = Axi. Another

aspect of the method is that it considers two classes. The kernel trick is used to provide a

nonlinear extension to MFA. To construct the cost function,two quantities are of interest:

intraclass compactness and interclass separability. The intraclass compactness can be written

as
∑

i,j

wij‖yi − yj‖
2, (8)

wherewij is given by

wij = (
∑

k

ckickj)I(xi ∈ N+
k1
(xj) or xj ∈ N+

k1
(xi)) (9)

andN+
k (x) denote thek-nn neighborhood ofx within the same class asx. Note that the term

∑

k ckickj is one ifxi andxj have the same label and zero otherwise. Similarly, the interclass

separability can be written as
∑

i,j

wij‖yi − yj‖
2, (10)

wherewij is given by

wij = (1−
∑

k

ckickj)I(xi ∈ N−
k2
(xj) or xj ∈ N−

k2
(xi)) (11)

andN−
k (x) denote thek-nn neighborhood ofx outside the class ofx.

IV. D IMENSIONALITY REDUCTION FOR CLASSIFICATION ON NONLINEAR MANIFOLDS

Here, we review the CCDR algorithm [14] and its extension to multi-class classification.

To cluster lower dimensional embedded points of the same label we associate each class with

a class center namelyzk ∈ R
m. We construct the following cost function:

J(ZL,Yn) =
∑

ki

cki ‖zk − yi‖
2 +

β

2

∑

ij

wij ‖yi − yj‖
2, (12)

October 31, 2018 DRAFT
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whereZL = {z1, . . . , zL} andβ ≥ 0 is a regularization parameter. We consider two terms on

the RHS of (12). The first term corresponds to the concentration of points of the same label

around their respective class center. The second term is as in (4) or as in Laplacian Eigenmaps

[8] and controls the smoothness of the embedding over the manifold. Large values ofβ produce

an embedding that ignores class labels and small values ofβ produce an embedding that ignores

the manifold structure. Training data points will tend to collapse into the class centers, allowing

many classifiers to produce perfect classification on the training data without being able to control

the generalization error (i.e., classification error of theunlabeled data). Our goal is to findZL

andYn that minimize the cost function in (12).

LetC be theL×n class membership matrix withcki as itski-th element,Z = [z1, . . . , zL,y1, . . . ,yn],

and0 be theL× L all zeroes matrix and

G =





0 C

CT βW



 .

Minimization overZ of the cost function in (12) can be expressed as

min
ZD1 = 0

ZDZT
= I

tr
(

ZLZT
)

, (13)

whereD = diag{G1} and L = D − G. To prevent the lower-dimensional points and the

class centers from collapsing into a single point at the origin, the regularizationZDZT = I

is introduced. The second constraintZD1 = 0 is constructed to prevent a degenerate solution,

e.g.,z1 = . . . = zL = y1 = . . . = yn. This solution may occur since1 is in the null-space of

the LaplacianL operator, i.e.,L1 = 0. The solution to (13) can be expressed in term of the

following generalized eigendecomposition

L(n)
u
(n)
k = λ

(n)
k D(n)

u
(n)
k , (14)

whereλ(n)
k is thekth eigenvalue andu(n)

k is its corresponding eigenvector. Note that we include
(n) to emphasize the dependence on then data points. Without loss of generality we assume

λ1 ≤ λ2 ≤ . . . ≤ λn+L. Specifically, matrixZ is given by[u2,u3, . . . ,um+1]
T , where the firstL

columns correspond to the coordinates of the class centers,i.e., zk = Zek, and the followingn

columns determine the embedding of then data points, i.e.,yt = ZeL+t. We useei to denote

the canonical vector such that[ei]s = 1 for elements = i and zero otherwise.
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A. Classification and computational complexity

In classification, the goal is to find a classifierax(x) : M → A based on the training data

that minimizes the generalization error:

â = argmin
a∈F

E[I(a(x) 6= a)], (15)

where the expectation is taken w.r.t. the pair(x, a). Since only samples from the joint distribution

of x and a are available, we replace the expectation with a sample average w.r.t. the training

data 1
n

∑n

i=1 I(a(xi) 6= ai). During the minimization, we search over a set of classifiersax(x) :

M ⊆ R
d → A, which is defined over a domain inRd. In our framework, we suggest replacing

a classifierax(x) : M ⊆ R
d → A with dimensionality reduction via CCDRf(x) : M ⊆

R
d → R

m followed by a classifier on the lower-dimensional spaceay(y) : R
m → A, i.e.,

ax = ay ◦ f . The first advantage is that the search space for the minimization in (15) defined

over ad-dimensional space can be reduced to anm-dimensional space. This results in significant

savings in computational complexity if the complexity associated with the process of obtaining

f can be made low. In general, the classifier setF has to be rich enough to attain a lower

generalization error. The other advantage of our method lies in the fact that CCDR is designed

to cluster points of the same label thus allowing for a linearclassifier or other low complexity

classifiers. Therefore, further reduction in the size of classF can be achieved in addition to the

reduction due to a lower-dimensional domain. To classify a new data point, one has to apply

CCDR to a new data point. If it is done brute force, the point isadded to the set of training

points with no label a new matrixW ′ is formed and an eigendecomposition is carried out.

When performing CCDR, each of then(n − 1)/2 terms of the form{‖xi − xj‖
2} requires

one summation andd multiplications leading to computational complexity of the orderO(dn2).

Construction of aK-nearest neighbors graph requiresO(kn) comparisons per point and therefore

a total ofO(kn2). The total number of operations involved in constructing the graph is therefore

O((k + d)n2). Next, an eigendecomposition is applied toW ′, which is an(L + n) × (L + n)

matrix. The associated computation complexity isO(n3). Therefore, the overall computational

complexity of CCDR isO(n3). This holds for both training and classification as explained

earlier. We are interested in reducing computational complexity in training the classifier and in

classification. For that purpose, we consider an out-of-sample extension of CCDR.
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V. OUT-OF-SAMPLE EXTENSION

We start by rearranging the generalized eigendecomposition of the Laplacian in (14) as

G(n)
u
(n)
l = (1− λ

(n)
l )D(n)

u
(n)
l , (16)

and recall thatu(n)
l = [z1(l), z1(l), . . . , z1(l),y1(l),y2(l), . . . ,yn(l)]

T . Since we consider anm-

dimensional embedding, we are only interested in eigenvectorsu2, . . . ,um+1. TheL+ i equation

(row) for i = 1, 2, . . . , n in the eigendecomposition in (16) can be written as

y
(n)
i (l) =

1

1− λ
(n)
l

∑

k ckiz
(n)
k (l) + β

∑

j K(xi,xj)y
(n)
j (l)

∑

k cki + β
∑

j K(xi,xj)
. (17)

Similarly, thekth equation (row) of (16) fork = 1, 2, . . . , L is given by

z
(n)
k (l) =

∑

i ckiy
(n)
i (l)

(1− λ
(n)
l )nk

. (18)

Our interest is in finding a mappingf (x, c) that in addition to mapping everyxi to yi, can

perform an out-of-sample extension, i.e., is well-defined outside the setX . We consider the

following out-of-sample extension expression

f
(n)
l (x, c) =

1

1− λ
(n)
l

I(c 6= 0)z
(n)
c (l) + β

∑

j K(x,xj)y
(n)
j (l)

I(c 6= 0) + β
∑

j K(x,xj)
, (19)

where z(n) is the same as in (18). This formula can be explain as follows.First, the lower

dimensional embeddingy(n)
1 , . . . ,y

(n)
n and the class centersz(n)

1 , . . . , z
(n)
L are obtained through

an the eigendecomposition in (16). Then, the embedding outside the sample setX is calculated

via (19). By comparison off (n)
l (xi, ci) evaluated through (19) with (17), we havef (n)

l (xi, ci) =

y
(n)
i (l). This suggests that the out-of-sample extension coincideswith the solution, we already

have for the mapping at the the data pointsX . Moreover, using this result one can replace all

y
(n)
i with f

(n)
l (xi, ci) in (19) and obtain the following generalization of the eigendecomposition

in (16):

f
(n)
l (x, c) =

1

1− λ
(n)
l

I(c 6= 0)z
(n)
c (l) + β

∑

j K(x,xj)f
(n)
l (xj , cj)

I(c 6= 0) + β
∑

j K(x,xj)
, (20)

and

z
(n)
k (l) =

∑

i ckif
(n)
l (xi, ci)

(1− λ
(n)
l )nk

. (21)
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In [18], it is propose that if the out-of-sample solution to the eigendecomposition problem

associated with kernel PCA converge, it is given by the solution to the asymptotic equivalent

of the eigendecomposition. Using similar machinery, we canprovide a similar result suggesting

that if f (n)
l (x, c) → f

(∞)
l (x, c) as n → ∞, then the asymptotic equivalents to (20) and (21)

should provide the solution to the limit off (n)
l (x, c). The asymptotic analogues to (17) and

(18) are described in the following. The mapping for labeleddatafl(x, c) : M ×A → R for

c = 0, 1, 2, . . . , L equivalent to equation (17) is

fl(x, c) =
1

1− λl

I(c 6= 0)zc(l) + β ′
∑L

c′=0

∫

M
K(x,x′)fl(x

′, c′)P (x′, c′)dx′

I(c 6= 0) + β ′
∫

M
K(x,x′)p(x′)dx′

(22)

wherezc(l) for c = 1, 2, . . . , L is equivalent to (18)

zc(l) =

∫

M
fl(x, c)p(x|c)dx

1− λl

, (23)

and β ′ = βn. Since we are interested in anm-dimensional embedding, we consider onlyl =

1, 2, . . . , m, i.e., the eigenvectors that correspond to them smallest eigenvalues. To guarantee

that the relevant eigenvectors are unique (up to a multiplicative constant), we requireλ1 < λ2 <

· · · < λm+1 ≤ λm+2 ≤ . . . λn.

The out-of-sample extension given by (19), can be useful in acouple of scenario. The first,

is in classification of new unlabeled samples. We assume that{yj}
n
j=1, {zk}

L
k=1, and {λl}

m
l=1

are already obtained based on labeled (or partially labeled) training data and we would like to

embed a new unlabeled data point. We consider using (19) withc = 0, i.e., we can usef (x, 0) to

map a new samplex to R
m. The obvious immediate advantage is the savings in computational

complexity as we avoid performing addition eigendecomposition that includes the new point.

The second scenario involves the out-of-sample extension for labeled data. The goal here is

not to classify the data since the label is already available. Instead, we are interested in the

training phase in the case of largen for which the eigendecomposition is infeasible. In this

case, a large amount of labeled training data is available but due to the heavy computational

complexity associated with the eigendecomposition in (14)(or by (16)), the data cannot be

processed. In this case, we are interested in developing a resampling method, which integrates

f
(n)
l (x, c) obtained for different subsamples of the complete data set.
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A. Classification Algorithms

We consider three widespread algorithms:k-nearest neighbors, linear classification, and neural

networks. A standard implementation ofk-nearest neighbors was used, see [1, p. 415]. The linear

classifier we implemented is given by

ĉ(y) = arg max
c∈{A1,...AL}

yTα(c) + α
(c)
0

[

α(Ak), α
(Ak)
0

]

= arg min
[α,α0]

n
∑

i=1

(yT
i α+ α0 − cki)

2,

for k = 1, . . . , L. The neural network we implemented is a three-layer neural network with d

elements in the input layer,2d elements in the hidden layer, and6 elements in the output layer

(one for each class). Hered was selected using the common PCA procedure, as the smallest

dimension that explains99.9% of the energy of the data. A gradient method was used to train the

network coefficients with 2000 iterations. The neural net issignificantly more computationally

burdensome than either linear ork-nearest neighbors classifications algorithms.

B. Data Description

In this section, we examine the performance of the classification algorithms on the benchmark

label classification problem provided by the Landsat MSS satellite imagery database [19]. Each

sample point consists of the intensity values of one pixel and its 8 neighboring pixels in 4

different spectral bands. The training data consists of 4435 36-dimensional points of which,

1072 are labeled as 1) red soil, 479 as 2) cotton crop, 961 as 3)grey soil, 415 as 4) damp

grey soil, 470 are labeled as 5) soil with vegetation stubble, and 1038 are labeled as 6) very

damp grey soil. The test data consists of 2000 36-dimensional points of which, 461 are labeled

as 1) red soil, 224 as 2) cotton crop, 397 as 3) grey soil, 211 as4) damp grey soil, 237 are

labeled as 5) soil with vegetation stubble, and 470 are labeled as 6) very damp grey soil. In

the following, each classifier is trained on the training data and its classification is evaluated

based on the entire sample test data. In Table I, we present “best case” performance of neural

networks, linear classifier, andk-nearest neighbors in three cases: no dimensionality reduction,

dimensionality reduction via PCA, and dimensionality reduction via CCDR. The table presents

the minimum probability of error achieved by varying the tuning parameters of the classifiers.
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The benefit of using CCDR is obvious and we are prompted to further evaluate the performance

gains attained using CCDR.

Neural Net. Lin. k-nearest neigh.

No dim. reduc. 83 % 22.7 % 9.65 %

PCA 9.75 % 23 % 9.35 %

CCDR 8.95 % 8.95 % 8.1 %

TABLE I

CLASSIFICATION ERROR PROBABILITY

C. Regularization Parameterβ

As mentioned earlier, the CCDR regularization parameterβ controls the contribution of the

label information versus the contribution of the geometry described by the sample. We apply

CCDR to the 36-dimensional data to create a 14-dimensional embedding by varyingβ over a

range of values. For justification of our choice ofd = 14 dimensions see Section V-D. In the

process of computing the weightswij for the algorithm, we usek-nearest neighbors withk = 4

to determine the local neighborhood. Fig. 2 shows the classification error probability (dashed

lines) for the linear classifier vs.β after preprocessing the data using CCDR withk = 4 and

dimension 14. We observe that for a large range ofβ the average classification error probability

is greater than0.09 but smaller than0.095. This performance competes with the performance

of k-nearest neighbors applied to the high-dimensional data, which is presented in [1] as the

leading classifier for this benchmark problem. Another observation is that for small values of

β (i.e., β < 0.1) the probability of error is constant. For such small value of β, classes in

the lower-dimensional embedding are well-separated and are well-concentrated around the class

centers. Therefore, the linear classifier yields perfect classification on the training set and fairly

low constant probability of error on the test data is attained for low value ofβ. When β is

increased, we notice an increase in the classification errorprobability. This is due to the fact

that the training data become non separable by any linear classifier asβ increases.

We perform a similar study of classification performance fork-nearest neighbors. In Fig. 2,

classification probability error is plotted (dotted lines)vs. β. Here, we observed that an average
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error probability of0.086 can be achieved forβ ≈ 0.5. Therefore,k-nearest neighbors preceded

by CCDR outperforms the straightforwardk-nearest neighbors algorithm. We also observe that

whenβ is decreased the probability of error is increased. This canbe explained as due to the

ability of k-nearest neighbors to utilize local information, i.e., local geometry. This information

is discarded whenβ is decreased.

We conclude that CCDR can generate lower-dimensional data that is useful for global classi-

fiers, such as the linear classifier, by using a small value ofβ, and also for local classifiers, such

ask-nearest neighbors, by using a larger valueβ and thus preserving local geometry information.
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Fig. 2. Probability of incorrect classification vs.β for a linear classifier (dotted line◦) and for thek-nearest neighbors algorithm

(dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as× for the linear classifier and as+ for the

k-nearest neighbors algorithm.

D. Dimension Parameter

While the data points inXn may lie on a manifold of a particular dimension, the actual di-

mension required for classification may be smaller. Here, weexamine classification performance

as a function of the CCDR dimension. Using the entropic graphdimension estimation algorithm

in [20], we obtain the following estimated dimension for each class:

class 1 2 3 4 5 6

dimension 13 7 13 10 6 13
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Fig. 3. Probability of incorrect classification vs. CCDR’s dimension for a linear classifier (dotted line◦) and for thek-nearest

neighbors algorithm (dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as× for the linear classifier

and as+ for the k-nearest neighbors algorithm.

Therefore, if an optimal nonlinear embedding of the data could be found, we suspect that a

dimension greater than13 may not yield significant improvement in classification performance.

Since CCDR does not necessarily yield an optimal embedding,we choose CCDR embedding

dimension asd = 14 in Section V-C.

In Fig. 3, we plot the classification error probability (dotted line) vs. CCDR dimension and

its confidence interval for a linear classifier. We observed decrease in error probability as the

dimension increases. When the CCDR dimension is greater than 5, the error probability seems

fairly constant. This is an indication that CCDR dimension of 5 is sufficient for classification if

one uses the linear classifier withβ = 0.5, i.e., linear classifier cannot exploit geometry.

We also plot the classification error probability (dashed line) vs. CCDR dimension and its

confidence interval fork-nearest neighbors classifier. Generally, we observe decrease in error

probability as the dimension increases. When the CCDR dimension is greater than5, the error

probability seems fairly constant. When CCDR dimension is three, classifier error is below0.1.

On the other hand, minimum possibility of error obtained at CCDR dimension 12-14. This

is remarkable agreement with the dimension estimate of13 obtained using the entropic graph

algorithm of [20].
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Fig. 4. Probability of incorrect classification vs. CCDR’sk-nearest neighbors parameter for a linear classifier (dotted line ◦)

and for thek-nearest neighbors algorithm (dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as×

for the linear classifier and as+ for the k-nearest neighbors algorithm.

E. CCDR’sk-Nearest Neighbors Parameter

The last parameter we examine is the CCDR’sk-nearest neighbors parameter. In general, as

k increases non-local distances are included in the lower-dimensional embedding. Hence, very

large k prevents the flexibility necessary for dimensionality reduction on (globally) non-linear

(but locally linear) manifolds.

In Fig. 4, the classification probability of error for the linear classifier (dotted line) is plotted

vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtained atk = 3 with probability

of error of 0.092. The classification probability of error fork-nearest neighbors (dashed line) is

plotted vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtained atk = 4 with

probability of error of0.086.

VI. CONCLUSION

In this paper, we presented the CCDR algorithm for multiple classes. We examined the per-

formance of various classification algorithms applied after CCDR for the Landsat MSS imagery

dataset. We showed that for a linear classifier, decreasingβ yields improved performance and for

ak-nearest neighbors classifier, increasingβ yields improved performance. We demonstrated that

both classifiers have improved performance on the much smaller dimension of CCDR embedding

space than when applied to the original high-dimensional data. We also explored the effect ofk
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in the k-nearest neighbors construction of CCDR weight matrix on classification performance.

CCDR allows reduced complexity classification such as the linear classifier to perform better

than more complex classifiers applied to the original data. We are currently pursuing an out-of-

sample extension to the algorithm that does not require rerunning CCDR on test and training

data to classify new test point.
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Abstract

Dimensionality reduction is a topic of recent interest. In this paper, we present the classification

constrained dimensionality reduction (CCDR) algorithm toaccount for label information. The algorithm

can account for multiple classes as well as the semi-supervised setting. We present an out-of-sample

expressions for both labeled and unlabeled data. For unlabeled data, we introduce a method of embedding

a new point as preprocessing to a classifier. For labeled data, we introduce a method that improves the

embedding during the training phase using the out-of-sample extension. We investigate classification

performance using the CCDR algorithm on hyper-spectral satellite imagery data. We demonstrate

the performance gain for both local and global classifiers and demonstrate a10% improvement of

the k-nearest neighbors algorithm performance. We present a connection between intrinsic dimension

estimation and the optimal embedding dimension obtained using the CCDR algorithm.

Index Terms

Classification, Computational Complexity, Dimensionality Reduction, Embedding, High Dimen-

sional Data, Kernel, K-Nearest Neighbor, Manifold Learning, Probability, Out-of-Sample Extension.

This work was partially funded by the DARPA Defense SciencesOffice under Office of Naval Research contract #N00014-

04-C-0437. Distribution Statement A. Approved for public release; distribution is unlimited. S. B. Damelin was supported in

part by National Science Foundation grant no. NSF-DMS-0555839 and NSF-DMS-0439734 and by AFRL.

R. Raich is with Oregon State University, Corvallis, OR. A. OHero III is with the University of Michigan, Ann Arbor. J. A.

Costa is with the California Institute of Technology. S. B. Damelin is with the Georgia Southern University.

October 31, 2018 DRAFT

http://arxiv.org/abs/0802.2906v1


TO BE SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 1

Classification Constrained Dimensionality

Reduction

I. INTRODUCTION

In classification theory, the main goal is to find a mapping from an observation spaceX

consisting of a collection of points in some containing Euclidean spaceRd, d ≥ 1 into a set

consisting of several different integer valued hypotheses. In some problems, the observations from

the setX lie on ad-dimensional manifoldM and Whitney’s theorem tells us that provided that

this manifold is smooth enough, there exists an embedding ofM into R
2d+1. This motivates the

approach taken by kernel methods in classification theory, such as support vector machines [?]

for example. Our interest is in finding an embedding ofM into a lower dimensional Euclidean

space.
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Fig. 1. PCA of a two-classes classification problem.

Dimensionality reduction of high dimensional data, was addressed in classical methods such

as principal component analysis (PCA) [?] and multidimensional scaling (MDS) [?], [?]. In PCA,

an eigendecomposition of thed×d empirical covariance matrix is performed and the data points

are linearly projected along the0 < m ≤ d eigenvectors with the largest eigenvalues. A problem

that may occur with PCA for classification is demonstrated inFig. 1. When the information

that is relevant for classification is present only in the eigenvectors associated with the small

eigenvalues (e2 in the figure), removal of such eigenvectors may result in severe degradation
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in classification performance. In MDS, the goal is to find a lower dimensional embedding of

the original data points that preserves the relative distances between all the data points. The

two later methods suffer greatly when the manifold is nonlinear. For example, PCA will not be

able to offer dimensionality reduction for classification of two classes lying each on one of two

concentric circles.

In [?], a nonlinear extension to PCA is presented. The algorithm is based on the “kernel trick”

[?]. Data points are nonlinearly mapped into a feature space, which in general has a higher (or

even infinite) dimension as compared with the original spaceand then PCA is applied to the

high dimensional data.

In the paper of Tenenbaumet al [?], Isomap, a global dimensionality reduction algorithm

was introduced taking into account the fact that data pointsmay lie on a lower dimensional

manifold. Unlike MDS, geodesic distances (distances that are measured along the manifold)

are preserved by Isomap. Isomap utilizes the classical MDS algorithm, but instead of using the

matrix of Euclidean distances, it uses a modified version of it. Each point is connected only

to points in its local neighborhood. A distance between a point and another point outside its

local neighborhood is replaced with the sum of distances along the shortest path in graph. This

procedure modifies the squared distances matrix replacing Euclidian with geodesic distances.

In [?], Belkin and Niyogi present a related Laplacian eigenmap dimensionality reduction

algorithm. The algorithm performs a minimization on the weighted sum of squared-distances

of the lower-dimensional data. Each weight multiplying thesquared-distances of two low-

dimensional data points is inversely related to distance between the corresponding two high-

dimensional data points. Therefore, small distance between two high-dimensional data points

results in small distance between two low-dimensional datapoints. To preserve the geodesic

distances, the weight of the distance between two points that do not share a local neighborhood

is set to zero.

We refer the interested reader to the references below and those cited therein for a list of

some of the most commonly used additional algorithms withinthe class ofmanifold learning

algorithms and their different advantages relevent to our work. Locally Linear Embedding (LLE)

[?], Laplacian Eigenmaps [?], Hessian Eigenmaps (HLLE) [?], Local Space Tangent Analysis

[?], Diffusion Maps [?] and Semidefinite Embedding (SDE) [?].

The algorithms mentioned above, consider the problem of learning a lower-dimensional em-
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bedding of the data. In classification, such algorithms can be used to preprocess high-dimensional

data before performing the classification. This could potentially allow for a lower computational

complexity of the classifier. In some cases, dimensionalityreduction results increase the computa-

tional complexity of the classifier. In fact, support vectormachines suggest the opposing strategy:

data points are projected onto a higher-dimensional space and classified by a low computational

complexity classifier. To guarantee a low computational complexity of the classifier of the low-

dimensional data, a classification constrained dimensionality reduction (CCDR) algorithm was

introduced in [?]. The CCDR algorithm is an extension of Laplacian eigenmaps[?] and it

incorporates class label information into the cost function, reducing the distance between points

with similar label. Another algorithm that incorporates label information is the marginal fisher

analysis (MFA) [?], in which a constraint on the margin between classes is usedto enforce class

separation.

In [?] the CCDR algorithm was only studied for two classes andits performance was illustrated

for simulated data. In [?], a multi-class extension to the problem was presented. In this paper,

we introduce two additional components that make the algorithm computationally viable. The

first is an out-of-sample extension for classification of unlabeled test points. Similarly to the

out-of-sample extension presented in [?], one can utilize the Nyström formula for classification

problems in which label information is available. We study the algorithm performance as its

various parameters, (e.g., dimension, label importance, and local neighborhood), are varied. We

study the performance of CCDR as preprocessing prior to implementation of several classi-

fication algorithms such ask-nearest neighbors, linear classification, and neural networks. We

demonstrate a10% improvement over thek-nearest neighbors algorithm performance benchmark

for this dataset. We address the issue of dimension estimation and its effect on classification

performance.

The organization of this paper is as follows. Section III presents the multiple-class CCDR

algorithm. Section?? provides a study of the algorithm using the Landsat dataset and Section

VI summaries our results.

II. D IMENSIONALITY REDUCTION

Let Xn = {x1,x2, . . . ,xn} be a set ofn points constrained to lie on anm-dimensional

submanifoldM ⊆ R
d. In dimensionality reduction, our goal is to obtain a lower-dimensional
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embeddingYn = {y1,y2, . . . ,yn} (whereyi ∈ R
m with m < d) that preserves local geometry

information such that processing of the lower dimensional embeddingYn yields comparable

performance to processing of the original data pointsXn. Alternatively, we would like learn

the mappingf : M ⊆ R
d → R

m that maps every data pointxi to yi = f(xi) such that

some geometric properties of the high-dimensional data arepreserved in the lower dimensional

embedding. The first question that comes to mind is how to select f , or more specifically how

to restrict the functionf so that we can still achieve our goal.

A. Linear dimensionality reduction

1) PCA: When principal component analysis (PCA) is used for dimensionality reduction, one

considers a linear embedding of the form

yi = f(xi) = Axi,

whereA is m × d. This embedding captures the notion of proximity in the sense that close

points in the high dimensional space map to close points in the lower dimensional embedding,

i.e., ‖yi − yj‖ = ‖A(xi − xj)‖ ≤ ‖A‖‖xi − xj‖. Let

x̄ =
1

n

n
∑

i=1

xi

and

Cx =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)T .

Similarly, let

ȳ =
1

n

n
∑

i=1

yi

and

Cy =
1

n

n
∑

i=1

(yi − ȳ)(yi − ȳ)T .

Sinceyi = Axi, we haveȳ = Ax̄ andCy = ACxA
T . In PCA, the goal is to find the projection

matrix A that preserves most of the energy in the original data by solving

max
A

tr{Cy(A)} s.t. AAT = I,

which is equivalent to

max
A

tr{ACxA
T} s.t. AAT = I. (1)
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The solution to (1), is given byA = [u1,u2, . . . ,um]
T , whereui is the eigenvector ofCx

corresponding to itsith largest eigenvalue. When the data lies on anm-dimensional hyperplane,

the matrix Cx has onlym positive eigenvalues and the rest are zero. Furthermore, every xi

belongs tox̄ + span{u1,u2, . . . ,um} ⊆ R
d. In this case, the mapping PCA findsf(x) = Ax

is one-to-one and satisfies‖f(xi)− f(xj)‖ = ‖A(xi −xj)‖ = ‖xi −xj‖. Therefore, the lower

embedding preserves all the geometry information in the original datasetX . We would like to

point out that PCA can be written as

max
{Y}

n
∑

i=1

‖yi − yj‖
2 s.t. yi = Axi andAAT = I,

2) MDS: Multidimensional Scaling (MDS) differs from PCA in the way the input is provided

to it. While in PCA, the original dataX is provided, the classical MDS requires only the set

of all Euclidean pairwise distances{‖xi − xj‖2}
n−1
i=1,j>i. As MDS uses only pairwise distances,

the solution it finds is given up to translation and unitary transformation. Letx′
i = xi − c, the

Euclidean distance‖x′
i−x′

j‖ is the same as‖xi −xj‖. Let U be an arbitrary unitary matrixU

satisfyingUTU = I and definex′
i = Ux. The distance‖x′

i − x′
j‖ is equal to‖U(xi − xj)‖,

which by the invariance of the Euclidean norm to a unitary transformation equals to‖xi −xj‖.

Denote the pairwise squared-distance matrix by[D2]ij = ‖xi − xj‖
2. By the definition of

Euclidean distance, the matrixD2 satisfies

D2 = 1φT + φ1T − 2XTX, (2)

where X = [x1,x2, . . . ,xn] and φ = [‖x1‖
2, ‖x2‖

2, . . . , ‖xn‖
2]T . To verify (2), one can

examine theij-th term ofD2 and compare with‖xi − xj‖
2. Denote then × n matrix H =

I − 11
T /n. Multiplying both sides ofD2 with H in addition to a factor of−1

2
, yields

−
1

2
HD2H = (XH)T (XH),

which is key to MDS, i.e., Cholesky decomposition of−1
2
HD2H yieldsX to within a trans-

lation and a unitary transformation. Consider the eigendecomposition−1
2
HD2H = UΛUT .

Therefore, a rankd X can be obtained asX = Λ
1
2
dU

T
d , whereΛd = diag{[λ1, λ2, . . . , λd]}

1
2

andU d = [u1,u2, . . . ,ud]. Note thatXH is a translated version ofX, in which every column

xi is translated toxi − x̄.

To use MDS for dimensionality reduction, we can consider a two step process. First a square-

distance matrixD2 is obtained from the high-dimensional dataX . Then, MDS is applied toD2

October 31, 2018 DRAFT



TO BE SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 6

to obtain a low-dimensional (m < d) embedding byXm = Λ
1
2
mU

T
m = XUmU

T
m. In the absence

of noise, this procedure provides an affine transformation to the high-dimensional data and thus

can be regarded as a linear method.

B. Nonlinear dimensionality reduction

Linear maps are limited as they cannot preserve the geometryof nonlinear manifolds.

1) Kernel PCA: Kernel PCA is one of the first methods in dimensionality reduction of data

on nonlinear manifolds. The method combines the dimensionality reduction capabilities of PCA

on linear manifolds with a nonlinear embedding of data points in a higher (or even infinite)

dimensional space using “kernel trick” [?]. In PCA, one findsthe eigenvectors satisfying:Cxvk =

λkvk. Sincevk can be written as a linear combination of thexi’s: vk =
∑

i αki(xi − x̄), one

can replacevk in the eigendecomposition, simplify, and obtain:X(Kαk − λkαk) = 0, where

Kij = (xi − x̄)T (xj − x̄). Consider the mappingφ : M → H from the manifold to a Hilbert

space. The “kernel trick” suggests replacingxi with φ(xi) and therefore rewriting the kernel

asKij = φ(xi)
Tφ(xj). Further generalization can be made by settingKij = K(xi,xj) where

K(·, ·) is positive semidefinite. The resulting vectors are of the form vk =
∑

i αkiφ(xi) and

thus implementing a nonlinear embedding into a nonlinear manifold.

2) ISOMAP: In [?], Tenenbaumet al find a nonlinear embedding that rather than preserving

the Euclidean distance between points on a manifold, preserves the geodesic distance between

points on the manifold. Similar to MDS where a lower dimensional embedding is found to

preserve the Euclidean distances of high dimensional data,ISOMAP finds a lower dimensional

embedding that preserves the geodesic distances between high-dimensional data points.

3) Laplacian Eigenmaps:Belkin and Niyogi’s Laplacian eigenmaps dimensionality reduction

algorithm [?] takes a different approach. They consider a nonlinear mappingf that minimize

the Laplacian

arg min
‖f‖

L2(M)=1

∫

M

‖∇f‖2. (3)

Since the manifold is not available but only data point on it are, the lower dimensional embedding

is found by minimizing the graph Laplacian given by
n

∑

i=1

wij‖yi − yj‖
2, (4)
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wherewij is the ijth element of the adjacency matrix which is constructed as follows: For

k ∈ N, a k-nearest neighbors graph is constructed with the points inXn as the graph vertices.

Each pointxi is connected to itsk-nearest neighboring points. Note that it suffices that either

xi is amongxj ’s k-nearest neighbors orxj is amongxi’s k-nearest neighbors forxi andxj to

be connected. For a fixed scale parameterǫ > 0, the weight associated with the two pointsxi

andxj satisfies

wij =







exp {−‖xi − xj‖
2/ǫ} if xi andxj are connected

0 otherwise.

III. CLASSIFICATION CONSTRAINED DIMENSIONALITY REDUCTION

A. Statistical framework

To put the problem in a classification context, we consider the following model. LetXn =

{x1,x2, . . . ,xn} be a set ofn points sampled from anm-dimensional submanifoldM ⊆ R
d.

Each pointxi ∈ M is associate with a class labelci ∈ A = {0, 1, 2, . . . , L}, whereci = 0

corresponds to the case of unlabeled data. We assume that pairs (xi, ci) ∈ M×A are i.i.d. drawn

from a joint distribution

P (x, c) = px(x|c)Pc(c) = Pc(c|x)px(x), (5)

wherepx(x) > 0 andpx(x|c) > 0 (for x ∈ M) are the marginal and the conditional probability

density functions, respectively, satisfying
∫

M
px(x)dx = 1,

∫

M
px(x|c)dx = 1 andPc(c) > 0

andPc(c|x) > 0 are the a priori and a posteriori probability mass functionsof the class label,

respectively, satisfying
∑

c Pc(c) = 1 and
∑

c Pc(c|x) = 1. While we consider unlabeled points

of the form (xi, 0) similar labeled points, we still make the following distinction. Consider the

following mechanism for generating an unlabeled point. First, a class labelc ∈ {1, 2, . . . , L}

is generated from the labeled a priori probability mass function P ′
c(c) = P (c|c is labeled) =

Pc(c)/
∑L

c′=1 Pc(c
′). Thenxi is generated according topx(x|c). To treat c as an unobserved

label, we marginalizeP (x, c|c is labeled) = px(x|c)P
′
c(c) over c:

px(x|c = 0) =
L
∑

q=1

px(x|c = q)P ′
c(q) =

∑L

q=1 px(x|c = q)Pc(q)
∑L

c′=1 Pc(c′)
. (6)

This suggests that the conditional PDF of unlabeled pointsfx(x|c = 0) is uniquely determined by

the class priors and the conditionals for labeled point. We would like to point out that this is one
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of few treatments that can be offered for unlabeled point. For example, in anomaly detection,

one may want to associate the unlabeled point with contaminated data points, which can be

represented as a density mixture ofpx(x|c = 0) andγ(x) (e.g.,γ(x) is uniform inX ).

In classification constraint dimensionality reduction, our goal is to obtain a lower-dimensional

embeddingYn = {y1,y2, . . . ,yn} (whereyi ∈ R
m with m < d) that preserves local geometry

and that encourages clustering of points of the same class label. Alternatively, we would like

to find a mappingf (x, c) : M × A → R
m for which yi = f (xi, ci) that is smooth and that

clusters points of the same label.

We introduce the class label indicator for data pointxi ascki = I(ci = k), for k = 1, 2, . . . , L

and i = 1, 2, . . . , n. Note that when pointxi is unlabeledcki = 0 for all k. Using the class

indicator, we can write the number of point in classk asnk =
∑n

i=1 cki. If all points are labeled,

thenn =
∑L

k=1 nk.

B. Linear dimensionality reduction for classification

1) LDA: Restricting the discussion to linear maps, one can extend PCA to take into account

label information using the multi-class extension to Fisher’s linear discriminant analysis (LDA).

Instead of maximizing the data covariance matrix, LDA maximizes the ratio of the between-

class-covariance to within-class-covariance. In other words, we obtain a linear transformation

yi = f(xi, ci) = Axi with matrix A that is the solution to the following maximization:

max
A

tr{ACBA
T} s.t. ACWAT = I, (7)

where

CB =
1

n

L
∑

k=1

nk(x̄
(k) − x̄)(x̄(k) − x̄)T

is the between-class-covariance matrix,x̄(k) =
∑

i ckixi/nk is thekth class center,̄x =
∑

i xi/n

is the center point of the dataset,

CW =
1

n

L
∑

k=1

nkC
(k)
W ,

is the within-class-covariance, and

C
(k)
W =

∑n

i=1 cki(xi − x̄(k))(xi − x̄(k))T

nk
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is within-class-k covariance matrix. In Fig. 1, LDA selects an embedding that projects the

data ontoe2 since the maximum distance between classes is achieved along with a minimum

class variance when projecting the data ontoe2. We are interested in exploring a strategy that

maximizes class separation in the lower dimensional embedding.

2) Marginal Fisher Analysis:Recent work [?], presents the marginal Fisher analysis (MFA),

which is a method that minimizes the ratio between intraclass compactness and interclass

separability. In its basic formulation MFA is a linear embedding, in whichyi = Axi. Another

aspect of the method is that it considers two classes. The kernel trick is used to provide a

nonlinear extension to MFA. To construct the cost function,two quantities are of interest:

intraclass compactness and interclass separability. The intraclass compactness can be written

as
∑

i,j

wij‖yi − yj‖
2, (8)

wherewij is given by

wij = (
∑

k

ckickj)I(xi ∈ N+
k1
(xj) or xj ∈ N+

k1
(xi)) (9)

andN+
k (x) denote thek-nn neighborhood ofx within the same class asx. Note that the term

∑

k ckickj is one ifxi andxj have the same label and zero otherwise. Similarly, the interclass

separability can be written as
∑

i,j

wij‖yi − yj‖
2, (10)

wherewij is given by

wij = (1−
∑

k

ckickj)I(xi ∈ N−
k2
(xj) or xj ∈ N−

k2
(xi)) (11)

andN−
k (x) denote thek-nn neighborhood ofx outside the class ofx.

IV. D IMENSIONALITY REDUCTION FOR CLASSIFICATION ON NONLINEAR MANIFOLDS

Here, we review the CCDR algorithm [?] and its extension to multi-class classification.

To cluster lower dimensional embedded points of the same label we associate each class with

a class center namelyzk ∈ R
m. We construct the following cost function:

J(ZL,Yn) =
∑

ki

cki ‖zk − yi‖
2 +

β

2

∑

ij

wij ‖yi − yj‖
2, (12)
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whereZL = {z1, . . . , zL} andβ ≥ 0 is a regularization parameter. We consider two terms on

the RHS of (12). The first term corresponds to the concentration of points of the same label

around their respective class center. The second term is as in (4) or as in Laplacian Eigenmaps

[?] and controls the smoothness of the embedding over the manifold. Large values ofβ produce

an embedding that ignores class labels and small values ofβ produce an embedding that ignores

the manifold structure. Training data points will tend to collapse into the class centers, allowing

many classifiers to produce perfect classification on the training data without being able to control

the generalization error (i.e., classification error of theunlabeled data). Our goal is to findZL

andYn that minimize the cost function in (12).

LetC be theL×n class membership matrix withcki as itski-th element,Z = [z1, . . . , zL,y1, . . . ,yn],

and0 be theL× L all zeroes matrix and

G =





0 C

CT βW



 .

Minimization overZ of the cost function in (12) can be expressed as

min
ZD1 = 0

ZDZT
= I

tr
(

ZLZT
)

, (13)

whereD = diag{G1} and L = D − G. To prevent the lower-dimensional points and the

class centers from collapsing into a single point at the origin, the regularizationZDZT = I

is introduced. The second constraintZD1 = 0 is constructed to prevent a degenerate solution,

e.g.,z1 = . . . = zL = y1 = . . . = yn. This solution may occur since1 is in the null-space of

the LaplacianL operator, i.e.,L1 = 0. The solution to (13) can be expressed in term of the

following generalized eigendecomposition

L(n)
u
(n)
k = λ

(n)
k D(n)

u
(n)
k , (14)

whereλ(n)
k is thekth eigenvalue andu(n)

k is its corresponding eigenvector. Note that we include
(n) to emphasize the dependence on then data points. Without loss of generality we assume

λ1 ≤ λ2 ≤ . . . ≤ λn+L. Specifically, matrixZ is given by[u2,u3, . . . ,um+1]
T , where the firstL

columns correspond to the coordinates of the class centers,i.e., zk = Zek, and the followingn

columns determine the embedding of then data points, i.e.,yt = ZeL+t. We useei to denote

the canonical vector such that[ei]s = 1 for elements = i and zero otherwise.
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A. Classification and computational complexity

In classification, the goal is to find a classifierax(x) : M → A based on the training data

that minimizes the generalization error:

â = argmin
a∈F

E[I(a(x) 6= a)], (15)

where the expectation is taken w.r.t. the pair(x, a). Since only samples from the joint distribution

of x and a are available, we replace the expectation with a sample average w.r.t. the training

data 1
n

∑n

i=1 I(a(xi) 6= ai). During the minimization, we search over a set of classifiersax(x) :

M ⊆ R
d → A, which is defined over a domain inRd. In our framework, we suggest replacing

a classifierax(x) : M ⊆ R
d → A with dimensionality reduction via CCDRf(x) : M ⊆

R
d → R

m followed by a classifier on the lower-dimensional spaceay(y) : R
m → A, i.e.,

ax = ay ◦ f . The first advantage is that the search space for the minimization in (15) defined

over ad-dimensional space can be reduced to anm-dimensional space. This results in significant

savings in computational complexity if the complexity associated with the process of obtaining

f can be made low. In general, the classifier setF has to be rich enough to attain a lower

generalization error. The other advantage of our method lies in the fact that CCDR is designed

to cluster points of the same label thus allowing for a linearclassifier or other low complexity

classifiers. Therefore, further reduction in the size of classF can be achieved in addition to the

reduction due to a lower-dimensional domain. To classify a new data point, one has to apply

CCDR to a new data point. If it is done brute force, the point isadded to the set of training

points with no label a new matrixW ′ is formed and an eigendecomposition is carried out.

When performing CCDR, each of then(n − 1)/2 terms of the form{‖xi − xj‖
2} requires

one summation andd multiplications leading to computational complexity of the orderO(dn2).

Construction of aK-nearest neighbors graph requiresO(kn) comparisons per point and therefore

a total ofO(kn2). The total number of operations involved in constructing the graph is therefore

O((k + d)n2). Next, an eigendecomposition is applied toW ′, which is an(L + n) × (L + n)

matrix. The associated computation complexity isO(n3). Therefore, the overall computational

complexity of CCDR isO(n3). This holds for both training and classification as explained

earlier. We are interested in reducing computational complexity in training the classifier and in

classification. For that purpose, we consider an out-of-sample extension of CCDR.
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V. OUT-OF-SAMPLE EXTENSION

We start by rearranging the generalized eigendecomposition of the Laplacian in (14) as

G(n)
u
(n)
l = (1− λ

(n)
l )D(n)

u
(n)
l , (16)

and recall thatu(n)
l = [z1(l), z1(l), . . . , z1(l),y1(l),y2(l), . . . ,yn(l)]

T . Since we consider anm-

dimensional embedding, we are only interested in eigenvectorsu2, . . . ,um+1. TheL+ i equation

(row) for i = 1, 2, . . . , n in the eigendecomposition in (16) can be written as

y
(n)
i (l) =

1

1− λ
(n)
l

∑

k ckiz
(n)
k (l) + β

∑

j K(xi,xj)y
(n)
j (l)

∑

k cki + β
∑

j K(xi,xj)
. (17)

Similarly, thekth equation (row) of (16) fork = 1, 2, . . . , L is given by

z
(n)
k (l) =

∑

i ckiy
(n)
i (l)

(1− λ
(n)
l )nk

. (18)

Our interest is in finding a mappingf (x, c) that in addition to mapping everyxi to yi, can

perform an out-of-sample extension, i.e., is well-defined outside the setX . We consider the

following out-of-sample extension expression

f
(n)
l (x, c) =

1

1− λ
(n)
l

I(c 6= 0)z
(n)
c (l) + β

∑

j K(x,xj)y
(n)
j (l)

I(c 6= 0) + β
∑

j K(x,xj)
, (19)

where z(n) is the same as in (18). This formula can be explain as follows.First, the lower

dimensional embeddingy(n)
1 , . . . ,y

(n)
n and the class centersz(n)

1 , . . . , z
(n)
L are obtained through

an the eigendecomposition in (16). Then, the embedding outside the sample setX is calculated

via (19). By comparison off (n)
l (xi, ci) evaluated through (19) with (17), we havef (n)

l (xi, ci) =

y
(n)
i (l). This suggests that the out-of-sample extension coincideswith the solution, we already

have for the mapping at the the data pointsX . Moreover, using this result one can replace all

y
(n)
i with f

(n)
l (xi, ci) in (19) and obtain the following generalization of the eigendecomposition

in (16):

f
(n)
l (x, c) =

1

1− λ
(n)
l

I(c 6= 0)z
(n)
c (l) + β

∑

j K(x,xj)f
(n)
l (xj , cj)

I(c 6= 0) + β
∑

j K(x,xj)
, (20)

and

z
(n)
k (l) =

∑

i ckif
(n)
l (xi, ci)

(1− λ
(n)
l )nk

. (21)
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In [?], it is propose that if the out-of-sample solution to the eigendecomposition problem

associated with kernel PCA converge, it is given by the solution to the asymptotic equivalent

of the eigendecomposition. Using similar machinery, we canprovide a similar result suggesting

that if f (n)
l (x, c) → f

(∞)
l (x, c) as n → ∞, then the asymptotic equivalents to (20) and (21)

should provide the solution to the limit off (n)
l (x, c). The asymptotic analogues to (17) and

(18) are described in the following. The mapping for labeleddatafl(x, c) : M ×A → R for

c = 0, 1, 2, . . . , L equivalent to equation (17) is

fl(x, c) =
1

1− λl

I(c 6= 0)zc(l) + β ′
∑L

c′=0

∫

M
K(x,x′)fl(x

′, c′)P (x′, c′)dx′

I(c 6= 0) + β ′
∫

M
K(x,x′)p(x′)dx′

(22)

wherezc(l) for c = 1, 2, . . . , L is equivalent to (18)

zc(l) =

∫

M
fl(x, c)p(x|c)dx

1− λl

, (23)

and β ′ = βn. Since we are interested in anm-dimensional embedding, we consider onlyl =

1, 2, . . . , m, i.e., the eigenvectors that correspond to them smallest eigenvalues. To guarantee

that the relevant eigenvectors are unique (up to a multiplicative constant), we requireλ1 < λ2 <

· · · < λm+1 ≤ λm+2 ≤ . . . λn.

The out-of-sample extension given by (19), can be useful in acouple of scenario. The first,

is in classification of new unlabeled samples. We assume that{yj}
n
j=1, {zk}

L
k=1, and {λl}

m
l=1

are already obtained based on labeled (or partially labeled) training data and we would like to

embed a new unlabeled data point. We consider using (19) withc = 0, i.e., we can usef (x, 0) to

map a new samplex to R
m. The obvious immediate advantage is the savings in computational

complexity as we avoid performing addition eigendecomposition that includes the new point.

The second scenario involves the out-of-sample extension for labeled data. The goal here is

not to classify the data since the label is already available. Instead, we are interested in the

training phase in the case of largen for which the eigendecomposition is infeasible. In this

case, a large amount of labeled training data is available but due to the heavy computational

complexity associated with the eigendecomposition in (14)(or by (16)), the data cannot be

processed. In this case, we are interested in developing a resampling method, which integrates

f
(n)
l (x, c) obtained for different subsamples of the complete data set.
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A. Classification Algorithms

We consider three widespread algorithms:k-nearest neighbors, linear classification, and neural

networks. A standard implementation ofk-nearest neighbors was used, see [?, p. 415]. The linear

classifier we implemented is given by

ĉ(y) = arg max
c∈{A1,...AL}

yTα(c) + α
(c)
0

[

α(Ak), α
(Ak)
0

]

= arg min
[α,α0]

n
∑

i=1

(yT
i α+ α0 − cki)

2,

for k = 1, . . . , L. The neural network we implemented is a three-layer neural network with d

elements in the input layer,2d elements in the hidden layer, and6 elements in the output layer

(one for each class). Hered was selected using the common PCA procedure, as the smallest

dimension that explains99.9% of the energy of the data. A gradient method was used to train the

network coefficients with 2000 iterations. The neural net issignificantly more computationally

burdensome than either linear ork-nearest neighbors classifications algorithms.

B. Data Description

In this section, we examine the performance of the classification algorithms on the benchmark

label classification problem provided by the Landsat MSS satellite imagery database [?]. Each

sample point consists of the intensity values of one pixel and its 8 neighboring pixels in 4

different spectral bands. The training data consists of 4435 36-dimensional points of which,

1072 are labeled as 1) red soil, 479 as 2) cotton crop, 961 as 3)grey soil, 415 as 4) damp

grey soil, 470 are labeled as 5) soil with vegetation stubble, and 1038 are labeled as 6) very

damp grey soil. The test data consists of 2000 36-dimensional points of which, 461 are labeled

as 1) red soil, 224 as 2) cotton crop, 397 as 3) grey soil, 211 as4) damp grey soil, 237 are

labeled as 5) soil with vegetation stubble, and 470 are labeled as 6) very damp grey soil. In

the following, each classifier is trained on the training data and its classification is evaluated

based on the entire sample test data. In Table I, we present “best case” performance of neural

networks, linear classifier, andk-nearest neighbors in three cases: no dimensionality reduction,

dimensionality reduction via PCA, and dimensionality reduction via CCDR. The table presents

the minimum probability of error achieved by varying the tuning parameters of the classifiers.

October 31, 2018 DRAFT



TO BE SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 15

The benefit of using CCDR is obvious and we are prompted to further evaluate the performance

gains attained using CCDR.

Neural Net. Lin. k-nearest neigh.

No dim. reduc. 83 % 22.7 % 9.65 %

PCA 9.75 % 23 % 9.35 %

CCDR 8.95 % 8.95 % 8.1 %

TABLE I

CLASSIFICATION ERROR PROBABILITY

C. Regularization Parameterβ

As mentioned earlier, the CCDR regularization parameterβ controls the contribution of the

label information versus the contribution of the geometry described by the sample. We apply

CCDR to the 36-dimensional data to create a 14-dimensional embedding by varyingβ over a

range of values. For justification of our choice ofd = 14 dimensions see Section V-D. In the

process of computing the weightswij for the algorithm, we usek-nearest neighbors withk = 4

to determine the local neighborhood. Fig. 2 shows the classification error probability (dashed

lines) for the linear classifier vs.β after preprocessing the data using CCDR withk = 4 and

dimension 14. We observe that for a large range ofβ the average classification error probability

is greater than0.09 but smaller than0.095. This performance competes with the performance

of k-nearest neighbors applied to the high-dimensional data, which is presented in [?] as the

leading classifier for this benchmark problem. Another observation is that for small values of

β (i.e., β < 0.1) the probability of error is constant. For such small value of β, classes in

the lower-dimensional embedding are well-separated and are well-concentrated around the class

centers. Therefore, the linear classifier yields perfect classification on the training set and fairly

low constant probability of error on the test data is attained for low value ofβ. When β is

increased, we notice an increase in the classification errorprobability. This is due to the fact

that the training data become non separable by any linear classifier asβ increases.

We perform a similar study of classification performance fork-nearest neighbors. In Fig. 2,

classification probability error is plotted (dotted lines)vs. β. Here, we observed that an average
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error probability of0.086 can be achieved forβ ≈ 0.5. Therefore,k-nearest neighbors preceded

by CCDR outperforms the straightforwardk-nearest neighbors algorithm. We also observe that

whenβ is decreased the probability of error is increased. This canbe explained as due to the

ability of k-nearest neighbors to utilize local information, i.e., local geometry. This information

is discarded whenβ is decreased.

We conclude that CCDR can generate lower-dimensional data that is useful for global classi-

fiers, such as the linear classifier, by using a small value ofβ, and also for local classifiers, such

ask-nearest neighbors, by using a larger valueβ and thus preserving local geometry information.
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Fig. 2. Probability of incorrect classification vs.β for a linear classifier (dotted line◦) and for thek-nearest neighbors algorithm

(dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as× for the linear classifier and as+ for the

k-nearest neighbors algorithm.

D. Dimension Parameter

While the data points inXn may lie on a manifold of a particular dimension, the actual di-

mension required for classification may be smaller. Here, weexamine classification performance

as a function of the CCDR dimension. Using the entropic graphdimension estimation algorithm

in [?], we obtain the following estimated dimension for each class:

class 1 2 3 4 5 6

dimension 13 7 13 10 6 13
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Fig. 3. Probability of incorrect classification vs. CCDR’s dimension for a linear classifier (dotted line◦) and for thek-nearest

neighbors algorithm (dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as× for the linear classifier

and as+ for the k-nearest neighbors algorithm.

Therefore, if an optimal nonlinear embedding of the data could be found, we suspect that a

dimension greater than13 may not yield significant improvement in classification performance.

Since CCDR does not necessarily yield an optimal embedding,we choose CCDR embedding

dimension asd = 14 in Section V-C.

In Fig. 3, we plot the classification error probability (dotted line) vs. CCDR dimension and

its confidence interval for a linear classifier. We observed decrease in error probability as the

dimension increases. When the CCDR dimension is greater than 5, the error probability seems

fairly constant. This is an indication that CCDR dimension of 5 is sufficient for classification if

one uses the linear classifier withβ = 0.5, i.e., linear classifier cannot exploit geometry.

We also plot the classification error probability (dashed line) vs. CCDR dimension and its

confidence interval fork-nearest neighbors classifier. Generally, we observe decrease in error

probability as the dimension increases. When the CCDR dimension is greater than5, the error

probability seems fairly constant. When CCDR dimension is three, classifier error is below0.1.

On the other hand, minimum possibility of error obtained at CCDR dimension 12-14. This

is remarkable agreement with the dimension estimate of13 obtained using the entropic graph

algorithm of [?].
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Fig. 4. Probability of incorrect classification vs. CCDR’sk-nearest neighbors parameter for a linear classifier (dotted line ◦)

and for thek-nearest neighbors algorithm (dashed line⋄) preprocessed by CCDR.80% confidence intervals are presented as×

for the linear classifier and as+ for the k-nearest neighbors algorithm.

E. CCDR’sk-Nearest Neighbors Parameter

The last parameter we examine is the CCDR’sk-nearest neighbors parameter. In general, as

k increases non-local distances are included in the lower-dimensional embedding. Hence, very

large k prevents the flexibility necessary for dimensionality reduction on (globally) non-linear

(but locally linear) manifolds.

In Fig. 4, the classification probability of error for the linear classifier (dotted line) is plotted

vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtained atk = 3 with probability

of error of 0.092. The classification probability of error fork-nearest neighbors (dashed line) is

plotted vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtained atk = 4 with

probability of error of0.086.

VI. CONCLUSION

In this paper, we presented the CCDR algorithm for multiple classes. We examined the per-

formance of various classification algorithms applied after CCDR for the Landsat MSS imagery

dataset. We showed that for a linear classifier, decreasingβ yields improved performance and for

ak-nearest neighbors classifier, increasingβ yields improved performance. We demonstrated that

both classifiers have improved performance on the much smaller dimension of CCDR embedding

space than when applied to the original high-dimensional data. We also explored the effect ofk
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in the k-nearest neighbors construction of CCDR weight matrix on classification performance.

CCDR allows reduced complexity classification such as the linear classifier to perform better

than more complex classifiers applied to the original data. We are currently pursuing an out-of-

sample extension to the algorithm that does not require rerunning CCDR on test and training

data to classify new test point.
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