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Classification Constrained Dimensionality

Reduction

I. INTRODUCTION

In classification theory, the main goal is to find a mappingrfran observation spac#
consisting of a collection of points in some containing Eiean spaceR?, d > 1 into a set
consisting of several different integer valued hypothelsesome problems, the observations from
the setX lie on ad-dimensional manifoldg\ and Whitney’'s theorem tells us that provided that
this manifold is smooth enough, there exists an embeddinitdhto R2?+!. This motivates the
approach taken by kernel methods in classification theoigh s support vector machines [1]
for example. Our interest is in finding an embeddinghdfinto a lower dimensional Euclidean

space.
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Fig. 1. PCA of a two-classes classification problem.

Dimensionality reduction of high dimensional data, wasradsled in classical methods such
as principal component analysis (PCA) [2] and multidimenal scaling (MDS) [3], [4]. In PCA,
an eigendecomposition of thiex d empirical covariance matrix is performed and the data goint
are linearly projected along thie< m < d eigenvectors with the largest eigenvalues. A problem
that may occur with PCA for classification is demonstratedrig. 1. When the information
that is relevant for classification is present only in theeeigectors associated with the small

eigenvaluesd; in the figure), removal of such eigenvectors may result irese\degradation
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in classification performance. In MDS, the goal is to find adowlimensional embedding of
the original data points that preserves the relative digtarbetween all the data points. The
two later methods suffer greatly when the manifold is nagdin For example, PCA will not be
able to offer dimensionality reduction for classificatiointwo classes lying each on one of two
concentric circles.

In [5], a nonlinear extension to PCA is presented. The allgoriis based on the “kernel trick”
[6]. Data points are nonlinearly mapped into a feature spabéch in general has a higher (or
even infinite) dimension as compared with the original spaee then PCA is applied to the
high dimensional data.

In the paper of Tenenbaumt al [7], Isomap, a global dimensionality reduction algorithm
was introduced taking into account the fact that data paimay lie on a lower dimensional
manifold. Unlike MDS, geodesic distances (distances tmatraeasured along the manifold)
are preserved by Isomap. Isomap utilizes the classical MB&ithm, but instead of using the
matrix of Euclidean distances, it uses a modified versiont.oEach point is connected only
to points in its local neighborhood. A distance between anpand another point outside its
local neighborhood is replaced with the sum of distancesgatbe shortest path in graph. This
procedure modifies the squared distances matrix repladirgjdtan with geodesic distances.

In [8], Belkin and Niyogi present a related Laplacian eigaprdimensionality reduction
algorithm. The algorithm performs a minimization on the gieed sum of squared-distances
of the lower-dimensional data. Each weight multiplying tbguared-distances of two low-
dimensional data points is inversely related to distandevdxen the corresponding two high-
dimensional data points. Therefore, small distance betwe® high-dimensional data points
results in small distance between two low-dimensional ghatimts. To preserve the geodesic
distances, the weight of the distance between two pointsdilma@ot share a local neighborhood
is set to zero.

We refer the interested reader to the references below as# tbited therein for a list of
some of the most commonly used additional algorithms withm class ofmanifold learning
algorithms and their different advantages relevent to acankwiocally Linear Embedding (LLE)
[9], Laplacian Eigenmaps [8], Hessian Eigenmaps (HLLE)],[1®cal Space Tangent Analysis
[11], Diffusion Maps [12] and Semidefinite Embedding (SDE}].

The algorithms mentioned above, consider the problem ohileg a lower-dimensional em-

October 31, 2018 DRAFT



bedding of the data. In classification, such algorithms @auoded to preprocess high-dimensional
data before performing the classification. This could padyg allow for a lower computational
complexity of the classifier. In some cases, dimensionggditiiction results increase the computa-
tional complexity of the classifier. In fact, support veate&chines suggest the opposing strategy:
data points are projected onto a higher-dimensional spagelassified by a low computational
complexity classifier. To guarantee a low computational glexity of the classifier of the low-
dimensional data, a classification constrained dimen§tgrraduction (CCDR) algorithm was
introduced in [14]. The CCDR algorithm is an extension of laagan eigenmaps [8] and it
incorporates class label information into the cost funtti@ducing the distance between points
with similar label. Another algorithm that incorporateddh information is the marginal fisher
analysis (MFA) [15], in which a constraint on the margin beén classes is used to enforce
class separation.

In [14] the CCDR algorithm was only studied for two classesl ai$ performance was
illustrated for simulated data. In [16], a multi-class edi®n to the problem was presented. In this
paper, we introduce two additional components that makald@ithm computationally viable.
The first is an out-of-sample extension for classificatiommfbeled test points. Similarly to the
out-of-sample extension presented in [17], one can utiheeNystrom formula for classification
problems in which label information is available. We stuthg talgorithm performance as its
various parameters, (e.g., dimension, label importanue |@cal neighborhood), are varied. We
study the performance of CCDR as preprocessing prior toemphtation of several classi-
fication algorithms such ak-nearest neighbors, linear classification, and neural orétsy We
demonstrate &0% improvement over thé-nearest neighbors algorithm performance benchmark
for this dataset. We address the issue of dimension estimaind its effect on classification
performance.

The organization of this paper is as follows. Section Il qenets the multiple-class CCDR
algorithm. Sectior?? provides a study of the algorithm using the Landsat datasgtSection

VIl summaries our results.

II. DIMENSIONALITY REDUCTION

Let X, = {x1,xs,...,x,} be a set ofn points constrained to lie on am-dimensional

submanifoldM C R?. In dimensionality reduction, our goal is to obtain a lowdémensional
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embeddingy,, = {y,,v,,-..,y,} (Wherey, € R™ with m < d) that preserves local geometry
information such that processing of the lower dimensiomabedding)), yields comparable
performance to processing of the original data poifits Alternatively, we would like learn
the mappingf : M C R? — R™ that maps every data point; to y, = f(x;) such that
some geometric properties of the high-dimensional datgpeserved in the lower dimensional
embedding. The first question that comes to mind is how tacséleor more specifically how

to restrict the functionf so that we can still achieve our goal.

A. Linear dimensionality reduction
1) PCA: When principal component analysis (PCA) is used for dinmedity reduction, one
considers a linear embedding of the form
y; = [(z;) = Az,
where A is m x d. This embedding captures the notion of proximity in the setimat close

points in the high dimensional space map to close pointsendtver dimensional embedding,
Le. ly; —y;ll = [[A(x: — )| < [|All[Je; — ;. Let

_ 1
T =— x;
n “
=1
and
1 n
Co=—) (i —z)(x; — )"
n =1
Similarly, let
I
Yy=—- Y;
n 4
=1
and

Sincey; = Ax;, we havey = Az andC, = AC,A”. In PCA, the goal is to find the projection

matrix A that preserves most of the energy in the original data byirsplv
mjxtr{Cy(A)} st. AAT =1,
which is equivalent to

mjxtr{ACxAT} st. AAT =1 (1)
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The solution to [(1), is given byd = [u,u,,...,u,,|T, whereu; is the eigenvector of’,
corresponding to itsth largest eigenvalue. When the data lies omadimensional hyperplane,
the matrixC, has onlym positive eigenvalues and the rest are zero. Furthermoesy ey,
belongs toz + spafu;, us, ..., u,} C R% In this case, the mapping PCA find$z) = Ax
is one-to-one and satisfidly (z;) — f(z;)|| = ||A(x; — x;)|| = ||x; — =;||. Therefore, the lower
embedding preserves all the geometry information in thgimal datasett’. We would like to

point out that PCA can be written as

n

2 T
max E =Y. st y,=Ax;,andAA" =1,
O} & Y, y]H Y;

2) MDS: Multidimensional Scaling (MDS) differs from PCA in the wayet input is provided
to it. While in PCA, the original dataX’ is provided, the classical MDS requires only the set
of all Euclidean pairwise distancgdx; — ;|- ?:‘ﬁm.. As MDS uses only pairwise distances,
the solution it finds is given up to translation and unitagnsformation. Lete; = x; — c, the
Euclidean distancgx; — /|| is the same agx; — x;||. Let U be an arbitrary unitary matrik/
satisfyingU”U = I and definex; = Ux. The distance|x] — /|| is equal to||U (z; — x;)|,
which by the invariance of the Euclidean norm to a unitarysgfarmation equals t@x; — x;/||.
Denote the pairwise squared-distance matrix [B];; = |z; — x;||*. By the definition of

Euclidean distance, the matri®, satisfies
D, =1¢" + p17 —2XTX, 2)

where X = [xy,@s,...,x,] and ¢ = [||z,]]?, ||z2|%, .. ., ||z.]|?]*. To verify (@), one can
examine theij-th term of D, and compare with|z; — x,|*>. Denote then x n matrix H =
I — 117 /n. Multiplying both sides ofD, with H in addition to a factor of-1, yields

1
—5HD,H = (XH)"(XH),

which is key to MDS, i.e., Cholesky decompositione%HDQH yields X to within a trans-
lation and a unitary transformation. Consider the eigeon‘Estition—%HDQH = UAU".
Therefore, a rankl X can be obtained aX = A(%UT, where A; = diag{[A1, Ao, .. .,/\d]}%
andU, = [uy, uy,. .., uy). Note thatX H is a translated version oX, in which every column
x; is translated tae; — .

To use MDS for dimensionality reduction, we can consider @ $tep process. First a square-
distance matrixDD, is obtained from the high-dimensional data Then, MDS is applied td,
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to obtain a low-dimensionah{ < d) embedding byX,, = A%Uﬁ = XU, UL . In the absence
of noise, this procedure provides an affine transformatiothhé high-dimensional data and thus

can be regarded as a linear method.

B. Nonlinear dimensionality reduction

Linear maps are limited as they cannot preserve the georoetmgnlinear manifolds.

1) Kernel PCA: Kernel PCA is one of the first methods in dimensionality reaucof data
on nonlinear manifolds. The method combines the dimen8tgnaduction capabilities of PCA
on linear manifolds with a nonlinear embedding of data moint a higher (or even infinite)
dimensional space using “kernel trick” [6]. In PCA, one firide eigenvectors satisfying, v, =
\evi. Sincevy can be written as a linear combination of thes: v, = >, ayi(x; — &), one
can replacev, in the eigendecomposition, simplify, and obtaK:( K o, — A\ray) = 0, where
K,;; = (z; — )" (x; — x). Consider the mapping : M — H from the manifold to a Hilbert
space. The “kernel trick” suggests replacimg with ¢(x;) and therefore rewriting the kernel
as K;; = ¢(x;)"¢(x;). Further generalization can be made by settiig = K (z;, ;) where
K(-,-) is positive semidefinite. The resulting vectors are of thenfer, = > . ax¢(x;) and
thus implementing a nonlinear embedding into a nonlineanifol.

2) ISOMAP: In [7], Tenenbaurret al find a nonlinear embedding that rather than preserving
the Euclidean distance between points on a manifold, presdhe geodesic distance between
points on the manifold. Similar to MDS where a lower dimensioembedding is found to
preserve the Euclidean distances of high dimensional ¢a@IMAP finds a lower dimensional
embedding that preserves the geodesic distances betwglemlimensional data points.

3) Laplacian EigenmapsBelkin and Niyogi's Laplacian eigenmaps dimensionalitgtuetion
algorithm [8] takes a different approach. They consider alinear mappingf that minimize

the Laplacian

arg min /ku? 3)
||f||L2(M):1 M

Since the manifold is not available but only data point orrét ghe lower dimensional embedding

is found by minimizing the graph Laplacian given by

> " wiilly; -yl (4)
=1

October 31, 2018 DRAFT



where w;; is the ijth element of the adjacency matrix which is constructed dsvis: For
k € N, a k-nearest neighbors graph is constructed with the point¥,iras the graph vertices.
Each pointx; is connected to itg-nearest neighboring points. Note that it suffices thateeith
x; is amongx,’'s k-nearest neighbors af; is amongx;’s k-nearest neighbors fae; andx; to
be connected. For a fixed scale parameter 0, the weight associated with the two points

andz; satisfies

exp {—|lz; — z;||*/€} if ; andx; are connected

0 otherwise.

IIl. CLASSIFICATION CONSTRAINED DIMENSIONALITY REDUCTION
A. Statistical framework

To put the problem in a classification context, we consider ftilowing model. LetX,, =
{x,,xs,...,2,} be a set ofr points sampled from am-dimensional submanifold C R<.
Each pointx; € M is associate with a class label € A = {0,1,2,..., L}, wherec; = 0
corresponds to the case of unlabeled data. We assume thataat;) € M x A are i.i.d. drawn

from a joint distribution

P, c) = ps(x|c) P(c) = Pelclz)ps (), ()

wherep,(x) > 0 andp,(x|c) > 0 (for z € M) are the marginal and the conditional probability
density functions, respectively, satisfying, p.(x)de = 1, [, p.(x|c)dz = 1 and P.(c) > 0
and P.(c|x) > 0 are the a priori and a posteriori probability mass functiohshe class label,
respectively, satisfying |, P.(c) =1 and)__ FP.(c|xz) = 1. While we consider unlabeled points
of the form (x;,0) similar labeled points, we still make the following distiion. Consider the
following mechanism for generating an unlabeled pointstria class labet € {1,2,..., L}

is generated from the labeled a priori probability mass fioncP.(c) = P(c|c is labeled =
Pc(c)/zf,:1 P.(). Thenx; is generated according te.(x|c). To treatc as an unobserved

label, we marginalize?(x, c|c is labeled = p,(x|c) P.(c) overc:

Sor pa(le = q)Pu(q)
ECL':l P(c)
This suggests that the conditional PDF of unlabeled pdgifts|c = 0) is uniquely determined by

(6)

$|C_O me.’,l}|0—q (>_

the class priors and the conditionals for labeled point. WWeld like to point out that this is one
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of few treatments that can be offered for unlabeled point. &@mple, in anomaly detection,
one may want to associate the unlabeled point with contaeidndata points, which can be
represented as a density mixturepefx|c = 0) and~(x) (e.g.,v(x) is uniform in X).

In classification constraint dimensionality reductionr goal is to obtain a lower-dimensional
embedding,, = {y,,v,,-..,y,} (Wherey, € R™ with m < d) that preserves local geometry
and that encourages clustering of points of the same class. |Alternatively, we would like
to find a mappingf(x,c) : M x A — R™ for which y, = f(x;,¢;) that is smooth and that
clusters points of the same label.

We introduce the class label indicator for data pathscy; = I(¢c; = k), fork=1,2,...,L
and: = 1,2,...,n. Note that when pointe; is unlabeledc,; = 0 for all £. Using the class
indicator, we can write the number of point in cldsasn, = >, ¢x;. If all points are labeled,
thenn = 31 ny.

B. Linear dimensionality reduction for classification

1) LDA: Restricting the discussion to linear maps, one can exterl teGake into account
label information using the multi-class extension to Fighknear discriminant analysis (LDA).
Instead of maximizing the data covariance matrix, LDA mazes the ratio of the between-
class-covariance to within-class-covariance. In otherdsowe obtain a linear transformation

y, = f(x;, ¢;) = Ax; with matrix A that is the solution to the following maximization:

myxtr{ACsA"} st ACyA” =1, @
where I
Cs =Y (@ — @)@ —2)"
k=1

is the between-class-covariance matf) = > c,x;/ny is thekth class centets = >, x;/n

is the center point of the dataset,

L

1 k
Cw =~ mCy
w nk_lnkW,

is the within-class-covariance, and

c® _ Yo CrilXs — i(k))(aji - j;(k))T
N
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is within-classk covariance matrix. In Figl]1l, LDA selects an embedding thajeets the
data ontoe, since the maximum distance between classes is achieved alitim a minimum
class variance when projecting the data oatoWe are interested in exploring a strategy that
maximizes class separation in the lower dimensional emhgdd

2) Marginal Fisher Analysis:Recent work [15], presents the marginal Fisher analysis\)MF
which is a method that minimizes the ratio between intraclesmpactness and interclass
separability. In its basic formulation MFA is a linear embed), in whichy, = Ax;. Another
aspect of the method is that it considers two classes. Theekérick is used to provide a
nonlinear extension to MFA. To construct the cost functibmp quantities are of interest:

intraclass compactness and interclass separability. ftnaclass compactness can be written

as
> wiilly; -yl 8)
,J
wherew;; is given by
wij = (chickj)f(wi € N (z;) or z; € N, (z,)) 9)

k
and N, () denote thek-nn neighborhood of within the same class as. Note that the term

> x Crici; is one ifx; andx; have the same label and zero otherwise. Similarly, thedlaes

separability can be written as

Zwinyz’ - yj||27 (10)
i,J
wherew;; is given by
Wij = (1 — ZCkiij)](mi € Nk;(:v]) orx; € Nk;(:vz)) (11)
k

and N, (x) denote thek-nn neighborhood of outside the class at.

V. DIMENSIONALITY REDUCTION FOR CLASSIFICATION ON NONLINEAR MANIFOLDS

Here, we review the CCDR algorithm [14] and its extension wdtitlass classification.
To cluster lower dimensional embedded points of the samal @b associate each class with

a class center namely, € R™. We construct the following cost function:

8
J(20,Y0) =D ewillze = will® + 5 D wis llyi — (12)

ki ij
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10

where Z;, = {z;,...,z,} and 3 > 0 is a regularization parameter. We consider two terms on
the RHS of [IR). The first term corresponds to the conceptratf points of the same label
around their respective class center. The second term is @ br as in Laplacian Eigenmaps
[8] and controls the smoothness of the embedding over théfoldinLarge values of3 produce
an embedding that ignores class labels and small valuggpodduce an embedding that ignores
the manifold structure. Training data points will tend tdlgpse into the class centers, allowing
many classifiers to produce perfect classification on theitrg data without being able to control
the generalization error (i.e., classification error of thndabeled data). Our goal is to fingé,
and ), that minimize the cost function in_(12).

Let C be theL xn class membership matrix with, as itski-th elementZ = [z1,..., 2., Yy, -, Y,],

andO0 be thelL x L all zeroes matrix and

0o C
CT AW

G —

Minimization over Z of the cost function in[(12) can be expressed as

min  tr(ZLZ") , (13)
ZD1=0
zZDZ" =1

where D = diag{G1} and L = D — G. To prevent the lower-dimensional points and the
class centers from collapsing into a single point at theiwyithe regularizationZ DZ* = I

is introduced. The second constraifD1 = 0 is constructed to prevent a degenerate solution,
eg.,z =...=2z, =Yy, =...=y,. This solution may occur since is in the null-space of
the LaplacianL operator, i.e.,.L1 = 0. The solution to[(I13) can be expressed in term of the

following generalized eigendecomposition
LMu™ =\ pry() (14)

Where)\,(f) is the kth eigenvalue andl,i”) is its corresponding eigenvector. Note that we include
(") to emphasize the dependence on théata points. Without loss of generality we assume
M < A\ < ... < A,y 1. Specifically, matrixZ is given by[u,, us, ..., u,,.1]7, where the first.
columns correspond to the coordinates of the class cemntersy, = Ze;, and the followingn
columns determine the embedding of thelata points, i.e.y, = Ze. ;. We usee; to denote

the canonical vector such that), = 1 for elements = i and zero otherwise.
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A. Classification and computational complexity

In classification, the goal is to find a classifier(x) : M — A based on the training data

that minimizes the generalization error:
a = argmin E[I(a(x) # a)], (15)

where the expectation is taken w.r.t. the gaira). Since only samples from the joint distribution
of & and a are available, we replace the expectation with a sampleageew.r.t. the training
datal " | I(a(x;) # a;). During the minimization, we search over a set of classifigfs) :
M C R? — A, which is defined over a domain iR¢. In our framework, we suggest replacing
a classifiera,(z) : M C R?* — A with dimensionality reduction via CCDR(x) : M C
R? — R™ followed by a classifier on the lower-dimensional spagéy) : R™ — A, i.e.,
a, = a, o f. The first advantage is that the search space for the miniimizén (15) defined
over ad-dimensional space can be reduced toradimensional space. This results in significant
savings in computational complexity if the complexity agated with the process of obtaining
f can be made low. In general, the classifier etas to be rich enough to attain a lower
generalization error. The other advantage of our methaditighe fact that CCDR is designed
to cluster points of the same label thus allowing for a linglassifier or other low complexity
classifiers. Therefore, further reduction in the size oggl& can be achieved in addition to the
reduction due to a lower-dimensional domain. To classifyes mlata point, one has to apply
CCDR to a new data point. If it is done brute force, the poinadsled to the set of training
points with no label a new matrik’’ is formed and an eigendecomposition is carried out.
When performing CCDR, each of thein — 1)/2 terms of the form{||z; — x;||*} requires
one summation and multiplications leading to computational complexity otbrderO(dn?).
Construction of & -nearest neighbors graph requireg:n) comparisons per point and therefore
a total of O(kn?). The total number of operations involved in constructing ghaph is therefore
O((k + d)n?). Next, an eigendecomposition is appliedd, which is an(L + n) x (L + n)
matrix. The associated computation complexityOi&:*). Therefore, the overall computational
complexity of CCDR isO(n?). This holds for both training and classification as expldine
earlier. We are interested in reducing computational cempy in training the classifier and in

classification. For that purpose, we consider an out-ofpsarextension of CCDR.
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V. OUT-OF-SAMPLE EXTENSION

We start by rearranging the generalized eigendecomposificthe Laplacian in[(14) as
GMu™ = (1 - A") D™, (16)

and recall that!” = [z,(1), z,(0), ..., z1(0), y, (1), y5(1), . . ., y, (D)]". Since we consider am-
dimensional embedding, we are only interested in eigenveas, . . ., u,,,1. The L+ equation

(row) for i = 1,2,...,n in the eigendecomposition if_{{L6) can be written as

Seenz (D) + B K (i, )y (1)

(n) 1
y, ()= (17)
D=1 St 7S, Klanw,)
Similarly, the kth equation (row) of[(16) fok = 1,2,..., L is given by
™ (1
z](f”) (l) — Zz C/ﬂyz ( ) (18)

(1= N")ne
Our interest is in finding a mapping(x, ¢) that in addition to mapping every; to y,, can
perform an out-of-sample extension, i.e., is well-definedsioe the setY. We consider the
following out-of-sample extension expression
1 (e #£0)z" () + 8%, K@ )y} (1)
A" Ic#0)+ 8y, K(@a)

where z(™ is the same as i _(18). This formula can be explain as folldvist, the lower

£V (@, c) = (19)

dimensional embedding&"), ...,y and the class centeﬁ”), - z(L”) are obtained through
an the eigendecomposition in_{16). Then, the embeddingdautee sample set is calculated
via (19). By comparison ofl(") (x;, ¢;) evaluated through (19) with (17), we haf{a") (x;,¢;) =
yﬁ”)(l). This suggests that the out-of-sample extension coinaidésthe solution, we already
have for the mapping at the the data poiats Moreover, using this result one can replace all
yE”) with fl(”)(:r;i, ¢;) in (19) and obtain the following generalization of the eigecomposition

in (16):

) () = 1 I(c# 020+ B K(z, ;) fi" (z;,¢;) (20)
L 1AW I(c#0)+ B8 K(z,x;) 7
and
(n)
gy = 2 ifi_(@irci) 21
2z, (1) 0= (21)
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In [18], it is propose that if the out-of-sample solution toeteigendecomposition problem
associated with kernel PCA converge, it is given by the smhuto the asymptotic equivalent
of the eigendecomposition. Using similar machinery, we geovide a similar result suggesting
that if fl”)(:c,c) — fl(‘x’)(w,c) asn — oo, then the asymptotic equivalents fo(20) ahd (21)
should provide the solution to the limit ofl(")(w,c). The asymptotic analogues to [17) and
(18) are described in the following. The mapping for labetieda f;(x,c) : M x A — R for
c=0,1,2,..., L equivalent to equatiori[(]L?) is

1 I(e#F0)z (D) + B>, OfM Ve, YP(x', )dx'
e = £ 5 L e e 22
wherez.(l) for c =1,2,..., L is equivalent to[(18)
D) = Iy fl(:v,c)p(:v|c)d:v7 (23)
1—X\

and 5’ = fn. Since we are interested in an-dimensional embedding, we consider orly-
1,2,...,m, i.e., the eigenvectors that correspond to thesmallest eigenvalues. To guarantee
that the relevant eigenvectors are unique (up to a muléiplie constant), we requirg; < Ay <

< At S Ao <A

The out-of-sample extension given hy {(19), can be useful aowple of scenario. The first,
is in classification of new unlabeled samples. We assume{tat’_,, {z:};_,, and {\};%,
are already obtained based on labeled (or partially labdtathing data and we would like to
embed a new unlabeled data point. We consider uifg (19)awtly, i.e., we can us¢(x, 0) to
map a new sample to R™. The obvious immediate advantage is the savings in compogdt
complexity as we avoid performing addition eigendecomjmsithat includes the new point.

The second scenario involves the out-of-sample extensiotabeled data. The goal here is
not to classify the data since the label is already availalistead, we are interested in the
training phase in the case of largefor which the eigendecomposition is infeasible. In this
case, a large amount of labeled training data is availabledba to the heavy computational
complexity associated with the eigendecomposition[in ((Bf) by (16)), the data cannot be
processed. In this case, we are interested in developingaaming method, which integrates

fl") (x, c) obtained for different subsamples of the complete data set.
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A. Classification Algorithms

We consider three widespread algorithrhsiearest neighbors, linear classification, and neural
networks. A standard implementation/ohearest neighbors was used, see [1, p. 415]. The linear

classifier we implemented is given by

R B T () (e)
é = ar max o’ + o
(y> gce{Al,mAL}y :
o4, 0™ = arg in 3 (alex+ 0 )’
, Q0 i=1

for k = 1,..., L. The neural network we implemented is a three-layer neusalark with d
elements in the input laye2d elements in the hidden layer, afdelements in the output layer
(one for each class). Heré was selected using the common PCA procedure, as the smallest
dimension that explain$9.9% of the energy of the data. A gradient method was used to thain t
network coefficients with 2000 iterations. The neural nesignificantly more computationally

burdensome than either linear bmearest neighbors classifications algorithms.

B. Data Description

In this section, we examine the performance of the classicalgorithms on the benchmark
label classification problem provided by the Landsat MS&lk& imagery database [19]. Each
sample point consists of the intensity values of one pixal @8 8 neighboring pixels in 4
different spectral bands. The training data consists 0f5438-dimensional points of which,
1072 are labeled as 1) red soil, 479 as 2) cotton crop, 961 a&gey)soil, 415 as 4) damp
grey soil, 470 are labeled as 5) soil with vegetation stubbiel 1038 are labeled as 6) very
damp grey soil. The test data consists of 2000 36-dimenlspmats of which, 461 are labeled
as 1) red soil, 224 as 2) cotton crop, 397 as 3) grey soil, 214)aamp grey soil, 237 are
labeled as 5) soil with vegetation stubble, and 470 are déabak 6) very damp grey soil. In
the following, each classifier is trained on the trainingadahd its classification is evaluated
based on the entire sample test data. In TAble I, we presest dase” performance of neural
networks, linear classifier, andnearest neighbors in three cases: no dimensionality tieaic
dimensionality reduction via PCA, and dimensionality retitn via CCDR. The table presents

the minimum probability of error achieved by varying the inghparameters of the classifiers.
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The benefit of using CCDR is obvious and we are prompted tbdéurtvaluate the performance

gains attained using CCDR.

Neural Net.‘ Lin. ‘ k-nearest neigh.
No dim. reduc. 83% | 22.7 % 9.65 %
PCA 9.75 % 23 % 9.35 %
CCDR 8.95 % | 8.95 % 8.1 %
TABLE |

CLASSIFICATION ERROR PROBABILITY

C. Regularization Paramete?

As mentioned earlier, the CCDR regularization paramgteontrols the contribution of the
label information versus the contribution of the geometegatibed by the sample. We apply
CCDR to the 36-dimensional data to create a 14-dimensianékedding by varyings over a
range of values. For justification of our choice &f 14 dimensions see Sectign V-D. In the
process of computing the weights; for the algorithm, we usé-nearest neighbors with = 4
to determine the local neighborhood. Hig. 2 shows the dlaatson error probability (dashed
lines) for the linear classifier vgi after preprocessing the data using CCDR with- 4 and
dimension 14. We observe that for a large range ¢ihe average classification error probability
is greater thar).09 but smaller thar0.095. This performance competes with the performance
of k-nearest neighbors applied to the high-dimensional dakachwis presented in [1] as the
leading classifier for this benchmark problem. Another oletgon is that for small values of
g (i.e., B < 0.1) the probability of error is constant. For such small valdeSo classes in
the lower-dimensional embedding are well-separated amaval-concentrated around the class
centers. Therefore, the linear classifier yields perfeasgification on the training set and fairly
low constant probability of error on the test data is attdife low value of 5. When S is
increased, we notice an increase in the classification @naivability. This is due to the fact
that the training data become non separable by any lineasifitx asj increases.

We perform a similar study of classification performance Kemearest neighbors. In Figl 2,

classification probability error is plotted (dotted lines) 5. Here, we observed that an average
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error probability 0f0.086 can be achieved faf ~ 0.5. Therefore k-nearest neighbors preceded
by CCDR outperforms the straightforwakdnearest neighbors algorithm. We also observe that
when g is decreased the probability of error is increased. Thislmam®xplained as due to the
ability of k-nearest neighbors to utilize local information, i.e.,dbgeometry. This information
is discarded wher is decreased.

We conclude that CCDR can generate lower-dimensional tiataig useful for global classi-
fiers, such as the linear classifier, by using a small valug, @ind also for local classifiers, such

ask-nearest neighbors, by using a larger valugnd thus preserving local geometry information.

0.24¢
0.2
\
\
0.2
0.18r

+
0.16r

1 ﬂ“ﬂ%

333833848 %‘é-ﬁé%é%ﬁé

0.08;

P(error)

0.0 - )

107 B 10

Fig. 2. Probability of incorrect classification v8.for a linear classifier (dotted line) and for thek-nearest neighbors algorithm
(dashed linev) preprocessed by CCDR0% confidence intervals are presentedsagdor the linear classifier and as for the

k-nearest neighbors algorithm.

D. Dimension Parameter

While the data points it,, may lie on a manifold of a particular dimension, the actual di
mension required for classification may be smaller. Heregxamine classification performance
as a function of the CCDR dimension. Using the entropic gidiptension estimation algorithm

in [20], we obtain the following estimated dimension for eadass:

class 112 3|4|5| 6
dimension|| 13| 7| 13| 10| 6| 13
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P(error)

014 !

| HHHH

Fig. 3. Probability of incorrect classification vs. CCDRisngnsion for a linear classifier (dotted ling and for thek-nearest

neighbors algorithm (dashed lirg preprocessed by CCDR0% confidence intervals are presentedafor the linear classifier

and as+ for the k-nearest neighbors algorithm.

Therefore, if an optimal nonlinear embedding of the datalccdoe found, we suspect that a
dimension greater thai3 may not yield significant improvement in classification peniance.
Since CCDR does not necessarily yield an optimal embeddiuegchoose CCDR embedding
dimension asl/ = 14 in Section V-C.

In Fig.[3, we plot the classification error probability (damttline) vs. CCDR dimension and
its confidence interval for a linear classifier. We observedrélase in error probability as the
dimension increases. When the CCDR dimension is greatarithtne error probability seems
fairly constant. This is an indication that CCDR dimensidrbas sufficient for classification if
one uses the linear classifier with= 0.5, i.e., linear classifier cannot exploit geometry.

We also plot the classification error probability (dashet)ivs. CCDR dimension and its
confidence interval fok-nearest neighbors classifier. Generally, we observe dseren error
probability as the dimension increases. When the CCDR dinans greater thah, the error
probability seems fairly constant. When CCDR dimensiorhiee, classifier error is below1.
On the other hand, minimum possibility of error obtained &DR dimension 12-14. This
is remarkable agreement with the dimension estimaté3obbtained using the entropic graph
algorithm of [20].
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Fig. 4. Probability of incorrect classification vs. CCDR!snearest neighbors parameter for a linear classifier (ddite o)
and for thek-nearest neighbors algorithm (dashed knegreprocessed by CCDR0% confidence intervals are presented-as

for the linear classifier and as for the k-nearest neighbors algorithm.

E. CCDR'sk-Nearest Neighbors Parameter

The last parameter we examine is the CCDR'searest neighbors parameter. In general, as
k increases non-local distances are included in the lowaedsional embedding. Hence, very
large k£ prevents the flexibility necessary for dimensionality retthn on (globally) non-linear
(but locally linear) manifolds.

In Fig.[4, the classification probability of error for the diar classifier (dotted line) is plotted
vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtaingd-at3 with probability
of error of 0.092. The classification probability of error fdr-nearest neighbors (dashed line) is
plotted vs. the CCDR’s:-nearest neighbors parameter. A minimum is obtainefl at4 with

probability of error of0.086.

VI. CONCLUSION

In this paper, we presented the CCDR algorithm for multiptesses. We examined the per-
formance of various classification algorithms appliedra@€DR for the Landsat MSS imagery
dataset. We showed that for a linear classifier, decreasyiglds improved performance and for
a k-nearest neighbors classifier, increasihgelds improved performance. We demonstrated that
both classifiers have improved performance on the much entdithension of CCDR embedding

space than when applied to the original high-dimensiontl.d&e also explored the effect éf
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in the k-nearest neighbors construction of CCDR weight matrix @asgfication performance.

CCDR allows reduced complexity classification such as theali classifier to perform better

than more complex classifiers applied to the original data.an¢ currently pursuing an out-of-

sample extension to the algorithm that does not requirenréng CCDR on test and training

data to classify new test point.
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Classification Constrained Dimensionality

Reduction

I. INTRODUCTION

In classification theory, the main goal is to find a mappingrfran observation spac#
consisting of a collection of points in some containing Elean spaceR?, d > 1 into a set
consisting of several different integer valued hypothelsesome problems, the observations from
the setX lie on ad-dimensional manifoldg\ and Whitney’'s theorem tells us that provided that
this manifold is smooth enough, there exists an embeddinttdhto R2?+!. This motivates the
approach taken by kernel methods in classification theoigh is support vector machineg |
for example. Our interest is in finding an embeddinghdfinto a lower dimensional Euclidean

space.

Fig. 1. PCA of a two-classes classification problem.

Dimensionality reduction of high dimensional data, wasradsled in classical methods such
as principal component analysis (PCA) gnd multidimensional scaling (MDSY], [?]. In PCA,
an eigendecomposition of thiex d empirical covariance matrix is performed and the data goint
are linearly projected along thie< m < d eigenvectors with the largest eigenvalues. A problem
that may occur with PCA for classification is demonstratedrig. 1. When the information
that is relevant for classification is present only in theeeigectors associated with the small

eigenvaluesd; in the figure), removal of such eigenvectors may result irese\degradation
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in classification performance. In MDS, the goal is to find adowlimensional embedding of
the original data points that preserves the relative digtarbetween all the data points. The
two later methods suffer greatly when the manifold is nagdin For example, PCA will not be
able to offer dimensionality reduction for classificatiointwo classes lying each on one of two
concentric circles.

In [?], a nonlinear extension to PCA is presented. The algorithivased on the “kernel trick”
[?]. Data points are nonlinearly mapped into a feature spabé&hnin general has a higher (or
even infinite) dimension as compared with the original spaee then PCA is applied to the
high dimensional data.

In the paper of Tenenbaumt al [?], Isomap, a global dimensionality reduction algorithm
was introduced taking into account the fact that data paimay lie on a lower dimensional
manifold. Unlike MDS, geodesic distances (distances tmatraeasured along the manifold)
are preserved by Isomap. Isomap utilizes the classical MB&ithm, but instead of using the
matrix of Euclidean distances, it uses a modified versiont.oEach point is connected only
to points in its local neighborhood. A distance between anpand another point outside its
local neighborhood is replaced with the sum of distancesgatbe shortest path in graph. This
procedure modifies the squared distances matrix repladirgjdtan with geodesic distances.

In [?], Belkin and Niyogi present a related Laplacian eigenmamettisionality reduction
algorithm. The algorithm performs a minimization on the giged sum of squared-distances
of the lower-dimensional data. Each weight multiplying tbguared-distances of two low-
dimensional data points is inversely related to distandevdxen the corresponding two high-
dimensional data points. Therefore, small distance betvwe® high-dimensional data points
results in small distance between two low-dimensional ghatimts. To preserve the geodesic
distances, the weight of the distance between two pointsdilma@ot share a local neighborhood
is set to zero.

We refer the interested reader to the references below as# tbited therein for a list of
some of the most commonly used additional algorithms withi class ofmanifold learning
algorithms and their different advantages relevent to acarkwi_ocally Linear Embedding (LLE)
[?], Laplacian Eigenmaps [?], Hessian Eigenmaps (HLLH) Local Space Tangent Analysis
[?], Diffusion Maps [?] and Semidefinite Embedding (SDE)]|

The algorithms mentioned above, consider the problem ohileg a lower-dimensional em-
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bedding of the data. In classification, such algorithms @auoded to preprocess high-dimensional
data before performing the classification. This could poayg allow for a lower computational
complexity of the classifier. In some cases, dimensionggditiuction results increase the computa-
tional complexity of the classifier. In fact, support veatechines suggest the opposing strategy:
data points are projected onto a higher-dimensional spagelassified by a low computational
complexity classifier. To guarantee a low computational glexity of the classifier of the low-
dimensional data, a classification constrained dimen8tgrraduction (CCDR) algorithm was
introduced in P]. The CCDR algorithm is an extension of Laplacian eigenmg}sand it
incorporates class label information into the cost funtti@ducing the distance between points
with similar label. Another algorithm that incorporateddh information is the marginal fisher
analysis (MFA) P], in which a constraint on the margin between classes is tsedforce class
separation.

In [?] the CCDR algorithm was only studied for two classes im@erformance was illustrated
for simulated data. In7], a multi-class extension to the problem was presentedhibygaper,
we introduce two additional components that make the algoricomputationally viable. The
first is an out-of-sample extension for classification ofalndled test points. Similarly to the
out-of-sample extension presented ), [one can utilize the Nystrom formula for classification
problems in which label information is available. We stuthg talgorithm performance as its
various parameters, (e.g., dimension, label importanue |@cal neighborhood), are varied. We
study the performance of CCDR as preprocessing prior toe@mphtation of several classi-
fication algorithms such ak-nearest neighbors, linear classification, and neural orétsv We
demonstrate &0% improvement over thé-nearest neighbors algorithm performance benchmark
for this dataset. We address the issue of dimension estimaind its effect on classification
performance.

The organization of this paper is as follows. Section Il qenets the multiple-class CCDR
algorithm. Sectior?? provides a study of the algorithm using the Landsat datasgtSection

VIlsummaries our results.

II. DIMENSIONALITY REDUCTION

Let X, = {x1,xs,...,x,} be a set ofn points constrained to lie on am-dimensional

submanifoldM C R?. In dimensionality reduction, our goal is to obtain a lowdmensional
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embeddingy,, = {y,,v,,-..,y,} (Wherey, € R™ with m < d) that preserves local geometry
information such that processing of the lower dimensiomabedding)), yields comparable
performance to processing of the original data poifits Alternatively, we would like learn
the mappingf : M C R? — R™ that maps every data point; to y, = f(x;) such that
some geometric properties of the high-dimensional datgpeserved in the lower dimensional
embedding. The first question that comes to mind is how tacséleor more specifically how

to restrict the functiornf so that we can still achieve our goal.

A. Linear dimensionality reduction
1) PCA: When principal component analysis (PCA) is used for dinemedity reduction, one
considers a linear embedding of the form
Y, = f(®i) = Aw;,

where A is m x d. This embedding captures the notion of proximity in the setimat close
points in the high dimensional space map to close pointsendiver dimensional embedding,
e, ly; —y;ll = Az — ;)| < [|All[l@; — ;]| Let

_ 1
T =— x;
n “
=1
and
1 n
Co=—) (i —z)(x; — )"
n =1
Similarly, let
I
Yy=—- Y;
n 4
=1
and

Sincey; = Ax;, we havey = Az andC, = AC,A”. In PCA, the goal is to find the projection

matrix A that preserves most of the energy in the original data byirsplv
mjxtr{Cy(A)} st. AAT =1,
which is equivalent to

mjxtr{ACxAT} st. AAT =1 (1)
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The solution to [(1), is given byd = [u,u,,...,u,,|’, whereu; is the eigenvector of’,
corresponding to itsth largest eigenvalue. When the data lies omadimensional hyperplane,
the matrixC, has onlym positive eigenvalues and the rest are zero. Furthermoesy ey,
belongs toz + spafu;, us, ..., u,} C R% In this case, the mapping PCA find$z) = Ax
is one-to-one and satisfidly (z;) — f(z;)|| = [|A(x; — x;)|| = ||x; — =;||. Therefore, the lower
embedding preserves all the geometry information in thgimal datasett’. We would like to

point out that PCA can be written as

n

2 T
max E =Y. st y,=Ax;,andAA" =1,
O} & Y, y]H Y;

2) MDS: Multidimensional Scaling (MDS) differs from PCA in the wayet input is provided
to it. While in PCA, the original dataX’ is provided, the classical MDS requires only the set
of all Euclidean pairwise distancdx; — x; |- ?:‘ﬁm.. As MDS uses only pairwise distances,
the solution it finds is given up to translation and unitagnsformation. Lete; = x; — c, the
Euclidean distancgx; — /|| is the same agx; — x;||. Let U be an arbitrary unitary matrik/
satisfyingU”U = I and definex; = Ux. The distance|x] — /|| is equal to||U (z; — x;)|,
which by the invariance of the Euclidean norm to a unitarysgfarmation equals t@x; — x;/||.
Denote the pairwise squared-distance matrix [B];; = |z; — x;||*. By the definition of

Euclidean distance, the matri®, satisfies
D, =1¢" + p17 —2XTX, 2)

where X = [xy,@s,...,x,] and ¢ = [||z,]]?, ||z2|%, .. ., ||z.]|?]*. To verify (@), one can
examine theij-th term of D, and compare with|z; — x,|*>. Denote then x n matrix H =
I — 117 /n. Multiplying both sides ofD, with H in addition to a factor of-1, yields

1
—5HD,H = (XH)"(XH),

which is key to MDS, i.e., Cholesky decompositione%HDQH yields X to within a trans-
lation and a unitary transformation. Consider the eigeon‘Estition—%HDQH = UAU".
Therefore, a rankl X can be obtained aX = A(%UT, where A; = diag{[A1, Ao, .. .,/\d]}%
andU, = [uy, uy,. .., uy). Note thatX H is a translated version oX, in which every column
x; is translated tae; — .

To use MDS for dimensionality reduction, we can consider @ $tep process. First a square-
distance matrixDD, is obtained from the high-dimensional data Then, MDS is applied td,
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to obtain a low-dimensionah{ < d) embedding byX,, = A%Uﬁ = XU, UL . In the absence
of noise, this procedure provides an affine transformatiothhé high-dimensional data and thus

can be regarded as a linear method.

B. Nonlinear dimensionality reduction

Linear maps are limited as they cannot preserve the georoetmgnlinear manifolds.

1) Kernel PCA: Kernel PCA is one of the first methods in dimensionality reaucof data
on nonlinear manifolds. The method combines the dimen8tgnaduction capabilities of PCA
on linear manifolds with a nonlinear embedding of data moint a higher (or even infinite)
dimensional space using “kernel trick” [?]. In PCA, one finlds eigenvectors satisfying; v, =
\evi. Sincevy can be written as a linear combination of thes: v, = >, ayi(x; — &), one
can replacev, in the eigendecomposition, simplify, and obtaK:( K o, — A\ray) = 0, where
K, = (z; — )" (x; — z). Consider the mapping : M — H from the manifold to a Hilbert
space. The “kernel trick” suggests replacimg with ¢(x;) and therefore rewriting the kernel
as K;; = ¢(x;)"¢(x;). Further generalization can be made by settiig = K (x;, ;) where
K(-,-) is positive semidefinite. The resulting vectors are of thenfer, = > . ax¢(x;) and
thus implementing a nonlinear embedding into a nonlineanifol.

2) ISOMAP: In [?], Tenenbaunet al find a nonlinear embedding that rather than preserving
the Euclidean distance between points on a manifold, presdhe geodesic distance between
points on the manifold. Similar to MDS where a lower dimensioembedding is found to
preserve the Euclidean distances of high dimensional ¢a@IMAP finds a lower dimensional
embedding that preserves the geodesic distances betwglemlimensional data points.

3) Laplacian EigenmapsBelkin and Niyogi's Laplacian eigenmaps dimensionalitgtuetion
algorithm [?] takes a different approach. They consider alinear mappingf that minimize

the Laplacian

arg min /ku? 3)
||f||L2(M):1 M

Since the manifold is not available but only data point orrét ghe lower dimensional embedding

is found by minimizing the graph Laplacian given by

> " wiilly; -yl (4)
=1
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where w;; is the ijth element of the adjacency matrix which is constructed dsvis: For
k € N, a k-nearest neighbors graph is constructed with the point¥,iras the graph vertices.
Each pointx; is connected to itg-nearest neighboring points. Note that it suffices thateeith
x; is amongx,’'s k-nearest neighbors af; is amongx;’s k-nearest neighbors fae; andx; to
be connected. For a fixed scale parameter 0, the weight associated with the two points

andz; satisfies

exp {—|lz; — z;||*/€} if ; andx; are connected

0 otherwise.

IIl. CLASSIFICATION CONSTRAINED DIMENSIONALITY REDUCTION
A. Statistical framework

To put the problem in a classification context, we considerftilowing model. LetX,, =
{x,,xs,...,2,} be a set ofr points sampled from am-dimensional submanifold C R<.
Each pointx; € M is associate with a class label € A = {0,1,2,..., L}, wherec; = 0
corresponds to the case of unlabeled data. We assume thataat;) € M x A are i.i.d. drawn

from a joint distribution

P, c) = ps(x|c) P.(c) = Pe(clz)ps (), ()

wherep,(x) > 0 andp,(x|c) > 0 (for z € M) are the marginal and the conditional probability
density functions, respectively, satisfying, p.(x)dx = 1, [, p.(x|c)dz = 1 and P.(c) > 0
and P.(c|x) > 0 are the a priori and a posteriori probability mass functiohshe class label,
respectively, satisfying |, P.(c) =1 and)_, FP.(c|xz) = 1. While we consider unlabeled points
of the form (x;,0) similar labeled points, we still make the following distiion. Consider the
following mechanism for generating an unlabeled pointstria class labet € {1,2,..., L}

is generated from the labeled a priori probability mass fioncP.(c) = P(c|c is labeled =
Pc(c)/zf,:1 P.(). Thenx; is generated according te.(x|c). To treatc as an unobserved

label, we marginalize?(x, c|c is labeled = p,(x|c) P.(c) overc:

Sr pa(le = q)Pu(q)
ECL':l P(c)
This suggests that the conditional PDF of unlabeled pdgifts|c = 0) is uniquely determined by

$|C_O me.’,l}|0—q (>_

(6)

the class priors and the conditionals for labeled point. WWeld like to point out that this is one
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of few treatments that can be offered for unlabeled point. &@mple, in anomaly detection,
one may want to associate the unlabeled point with contaeidndata points, which can be
represented as a density mixturepefx|c = 0) and~(x) (e.g.,v(x) is uniform in X).

In classification constraint dimensionality reductionr goal is to obtain a lower-dimensional
embedding,, = {y,, v, -.,y,} (Wherey, € R™ with m < d) that preserves local geometry
and that encourages clustering of points of the same class. |Alternatively, we would like
to find a mappingf(x,c) : M x A — R™ for which y, = f(x;,¢;) that is smooth and that
clusters points of the same label.

We introduce the class label indicator for data pathscy; = I(¢; = k), fork=1,2,...,L
and: = 1,2,...,n. Note that when pointe; is unlabeledc,; = 0 for all £. Using the class
indicator, we can write the number of point in cldsasn, = >, ¢x;. If all points are labeled,
thenn = 31 ny.

B. Linear dimensionality reduction for classification

1) LDA: Restricting the discussion to linear maps, one can exterl teGake into account
label information using the multi-class extension to Fighknear discriminant analysis (LDA).
Instead of maximizing the data covariance matrix, LDA mazes the ratio of the between-
class-covariance to within-class-covariance. In otherdsowe obtain a linear transformation

y, = f(x;, ¢;) = Ax; with matrix A that is the solution to the following maximization:

mpxtr{ACsA"} st ACyA” =1, @
where I
Cs =Y (@ — @)@ —2)"
k=1

is the between-class-covariance matf) = > c,x;/ny is thekth class centets = >, x;/n

is the center point of the dataset,

L

1 k
Cw =~ mCy
w nk_lnkW,

is the within-class-covariance, and

c® _ Yo CrilXs — i(k))(aji - j;(k))T
N
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is within-classk covariance matrix. In Figl]1l, LDA selects an embedding thajeets the
data ontoe, since the maximum distance between classes is achieved alitim a minimum
class variance when projecting the data oatoWe are interested in exploring a strategy that
maximizes class separation in the lower dimensional emhgdd

2) Marginal Fisher Analysis:Recent work [?], presents the marginal Fisher analysis (MFA
which is a method that minimizes the ratio between intraclesmpactness and interclass
separability. In its basic formulation MFA is a linear embed), in whichy, = Ax;. Another
aspect of the method is that it considers two classes. Theekérick is used to provide a
nonlinear extension to MFA. To construct the cost functibmp quantities are of interest:

intraclass compactness and interclass separability. ftnaclass compactness can be written

as
> wiilly; -yl 8)
,J
wherew;; is given by
wij = (chickj)f(wi € N (z;) or z; € N, (z,)) 9)

k
and N, () denote thek-nn neighborhood of within the same class as. Note that the term

> x Crici; is one ifx; andx; have the same label and zero otherwise. Similarly, thedlaes

separability can be written as

Zwinyz’ - yj||27 (10)
i,J
wherew;; is given by
Wij = (1 — ZCkiij)](mi € Nk;(:v]) orx; € Nk;(:vz)) (11)
k

and N, (x) denote thek-nn neighborhood of outside the class at.

V. DIMENSIONALITY REDUCTION FOR CLASSIFICATION ON NONLINEAR MANIFOLDS

Here, we review the CCDR algorithm [?] and its extension tdtiralass classification.
To cluster lower dimensional embedded points of the samal @b associate each class with

a class center namely, € R™. We construct the following cost function:

8
J(20,Y0) =D ewillze = will® + 5 D wis llyi — (12)

ki ij
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where Z;, = {z;,...,z,} and3 > 0 is a regularization parameter. We consider two terms on
the RHS of [IR). The first term corresponds to the concentratf points of the same label
around their respective class center. The second term is @ br as in Laplacian Eigenmaps
[?] and controls the smoothness of the embedding over théfaldhriarge values of3 produce
an embedding that ignores class labels and small valuggpodduce an embedding that ignores
the manifold structure. Training data points will tend tdlgpse into the class centers, allowing
many classifiers to produce perfect classification on theitrg data without being able to control
the generalization error (i.e., classification error of thndabeled data). Our goal is to fingé,
and ), that minimize the cost function in_(12).

Let C be theL xn class membership matrix with, as itski-th elementZ = [z1,..., 2., Yy, -, Y,],

andO0 be thelL x L all zeroes matrix and

0o C
CT AW

G —

Minimization over Z of the cost function in[(12) can be expressed as

min  tr(ZLZ") , (13)
ZD1=0
zZDZ" =1

where D = diag{G1} and L = D — G. To prevent the lower-dimensional points and the
class centers from collapsing into a single point at theiwyithe regularizationZ DZ* = I

is introduced. The second constraifD1 = 0 is constructed to prevent a degenerate solution,
eg.,z =...=2z, =Yy, =...=y,. This solution may occur since is in the null-space of
the LaplacianL operator, i.e.,.L1 = 0. The solution to[(I13) can be expressed in term of the

following generalized eigendecomposition
LMu™ =\ pry() (14)

Where)\,(f) is the kth eigenvalue andl,i”) is its corresponding eigenvector. Note that we include
(") to emphasize the dependence on théata points. Without loss of generality we assume
M < A\ < ... < A,y 1. Specifically, matrixZ is given by[u,, us, ..., u,,.1]7, where the first.
columns correspond to the coordinates of the class cemntersy, = Ze;, and the followingn
columns determine the embedding of thelata points, i.e.y, = Ze. ;. We usee; to denote

the canonical vector such that), = 1 for elements = i and zero otherwise.
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A. Classification and computational complexity

In classification, the goal is to find a classifier(x) : M — A based on the training data

that minimizes the generalization error:
a = argmin E[I(a(x) # a)], (15)

where the expectation is taken w.r.t. the gaira). Since only samples from the joint distribution
of & and a are available, we replace the expectation with a sampleageew.r.t. the training
datal " | I(a(x;) # a;). During the minimization, we search over a set of classifigefs) :
M C R? — A, which is defined over a domain iR¢. In our framework, we suggest replacing
a classifiera,(z) : M C R?* — A with dimensionality reduction via CCDR(x) : M C
R? — R™ followed by a classifier on the lower-dimensional spagéy) : R™ — A, i.e.,
a, = a, o f. The first advantage is that the search space for the miniimizén (15) defined
over ad-dimensional space can be reduced toradimensional space. This results in significant
savings in computational complexity if the complexity agated with the process of obtaining
f can be made low. In general, the classifier etas to be rich enough to attain a lower
generalization error. The other advantage of our methaditighe fact that CCDR is designed
to cluster points of the same label thus allowing for a linglassifier or other low complexity
classifiers. Therefore, further reduction in the size oggl& can be achieved in addition to the
reduction due to a lower-dimensional domain. To classifyes mlata point, one has to apply
CCDR to a new data point. If it is done brute force, the poinadsled to the set of training
points with no label a new matrik’’ is formed and an eigendecomposition is carried out.
When performing CCDR, each of thein — 1)/2 terms of the form{||z; — x;||*} requires
one summation and multiplications leading to computational complexity otbrderO(dn?).
Construction of & -nearest neighbors graph requireg:n) comparisons per point and therefore
a total of O(kn?). The total number of operations involved in constructing ghaph is therefore
O((k + d)n?). Next, an eigendecomposition is appliedd, which is an(L + n) x (L + n)
matrix. The associated computation complexityOi&:*). Therefore, the overall computational
complexity of CCDR isO(n?). This holds for both training and classification as expldine
earlier. We are interested in reducing computational cempy in training the classifier and in

classification. For that purpose, we consider an out-ofpsarextension of CCDR.
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V. OUT-OF-SAMPLE EXTENSION

We start by rearranging the generalized eigendecomposificthe Laplacian in[(14) as
GMu™ = (1 - A") DM, (16)

and recall that!” = [z,(1), z:(0), ..., z1(0), y, (1), y5(1), . . ..y, (D)]". Since we consider am-
dimensional embedding, we are only interested in eigenveas, . . ., u,,,1. The L+ equation

(row) for i = 1,2,...,n in the eigendecomposition in_({L6) can be written as

SO — L Zeews () +AY, Klwn 2y, () an
' 1— A Dk Cri + B2 K@i, x))
Similarly, the kth equation (row) of[(16) fok = 1,2,..., L is given by
(n)
n Z‘C 1 Y5 l
2 (1) = Z’f—?n)() (18)
(1 — )\l )nk

Our interest is in finding a mapping(x, ¢) that in addition to mapping every; to y,, can
perform an out-of-sample extension, i.e., is well-definedsioe the setY. We consider the
following out-of-sample extension expression

1 (e #£0)z" () + 8%, K@ )y} (1)
A" Ic#0)+ 8y, K(@a)

where z(™ is the same as i _(18). This formula can be explain as folldvist, the lower

£V (@, c) = (19)

dimensional embedding&"), ...,y and the class centeﬁ”), - z(L”) are obtained through
an the eigendecomposition in_{16). Then, the embeddingdautee sample set is calculated
via (19). By comparison ofl(") (x;, ¢;) evaluated through (19) with (17), we haf{a") (x;,¢;) =
yﬁ”)(l). This suggests that the out-of-sample extension coinaidésthe solution, we already
have for the mapping at the the data poiats Moreover, using this result one can replace all
yE”) with fl(”)(:r;i, ¢;) in (19) and obtain the following generalization of the eigecomposition

in (16):

) () = 1 I(c# 020+ B K(z, ;) fi" (z;,¢;) (20)
L 1AW I(c#0)+ B8 K(z,x;) 7
and
(n)
gy = 2 ifi_(@irci) 21
2z, (1) 0= (21)
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In [?], it is propose that if the out-of-sample solution to the ezidecomposition problem
associated with kernel PCA converge, it is given by the smhuto the asymptotic equivalent
of the eigendecomposition. Using similar machinery, we ggovide a similar result suggesting
that if fl”)(:c,c) — fl(‘x’)(w,c) asn — oo, then the asymptotic equivalents fo(20) ahd (21)
should provide the solution to the limit ofl(")(w,c). The asymptotic analogues to [17) and
(18) are described in the following. The mapping for labetieda f;(x,c) : M x A — R for
c=0,1,2,..., L equivalent to equatiori[(]L?) is

1 I(e#F0)z (D) + B>, OfM Ve, YP(x', )dx'
e = £ 5 L e e 22
wherez.(l) for c =1,2,..., L is equivalent to[(18)
D) = Iy fl(:v,c)p(:v|c)d:v7 (23)
1—X\

and 5’ = fn. Since we are interested in an-dimensional embedding, we consider orly-
1,2,...,m, i.e., the eigenvectors that correspond to thesmallest eigenvalues. To guarantee
that the relevant eigenvectors are unique (up to a muléiplie constant), we requirg; < Ay <

< At S Ao <A

The out-of-sample extension given hy {(19), can be useful aowple of scenario. The first,
is in classification of new unlabeled samples. We assume{tat’_,, {z:};_,, and {\};%,
are already obtained based on labeled (or partially labdtathing data and we would like to
embed a new unlabeled data point. We consider uifg (19)awtly, i.e., we can us¢(x, 0) to
map a new sample to R™. The obvious immediate advantage is the savings in compogdt
complexity as we avoid performing addition eigendecomjmsithat includes the new point.

The second scenario involves the out-of-sample extensiotabeled data. The goal here is
not to classify the data since the label is already availalistead, we are interested in the
training phase in the case of largefor which the eigendecomposition is infeasible. In this
case, a large amount of labeled training data is availabledba to the heavy computational
complexity associated with the eigendecomposition[in ((Bf) by (16)), the data cannot be
processed. In this case, we are interested in developingaaming method, which integrates

fl") (x, c) obtained for different subsamples of the complete data set.
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A. Classification Algorithms

We consider three widespread algorithrhsiearest neighbors, linear classification, and neural
networks. A standard implementation/ohearest neighbors was used, see [?, p. 415]. The linear

classifier we implemented is given by

R B T () (e)
é = ar max o’ +o
(y> gce{Al,mAL}y ‘
o4, 0] = arg in 3 (alex+ 00 - )’
, Q0 i=1

for k = 1,..., L. The neural network we implemented is a three-layer neusahark with d
elements in the input laye2d elements in the hidden layer, afdelements in the output layer
(one for each class). Heré was selected using the common PCA procedure, as the smallest
dimension that explain$9.9% of the energy of the data. A gradient method was used to thain t
network coefficients with 2000 iterations. The neural nesignificantly more computationally

burdensome than either linear bmearest neighbors classifications algorithms.

B. Data Description

In this section, we examine the performance of the classicalgorithms on the benchmark
label classification problem provided by the Landsat MS®ll& imagery database’]. Each
sample point consists of the intensity values of one pixal @8 8 neighboring pixels in 4
different spectral bands. The training data consists 0f5438-dimensional points of which,
1072 are labeled as 1) red soil, 479 as 2) cotton crop, 961 &gey)soil, 415 as 4) damp
grey soil, 470 are labeled as 5) soil with vegetation stubbiel 1038 are labeled as 6) very
damp grey soil. The test data consists of 2000 36-dimenlspmats of which, 461 are labeled
as 1) red soil, 224 as 2) cotton crop, 397 as 3) grey soil, 214)atamp grey soil, 237 are
labeled as 5) soil with vegetation stubble, and 470 are déabak 6) very damp grey soil. In
the following, each classifier is trained on the trainingadahd its classification is evaluated
based on the entire sample test data. In TAble |, we presest dase” performance of neural
networks, linear classifier, andnearest neighbors in three cases: no dimensionality tieaic
dimensionality reduction via PCA, and dimensionality refitn via CCDR. The table presents

the minimum probability of error achieved by varying the inghparameters of the classifiers.

October 31, 2018 DRAFT



TO BE SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 15

The benefit of using CCDR is obvious and we are prompted thdéurtvaluate the performance

gains attained using CCDR.

Neural Net.‘ Lin. ‘ k-nearest neigh.
No dim. reduc. 83% | 22.7 % 9.65 %
PCA 9.75 % 23 % 9.35 %
CCDR 8.95 % | 8.95 % 8.1 %
TABLE |

CLASSIFICATION ERROR PROBABILITY

C. Regularization Paramete?

As mentioned earlier, the CCDR regularization paramgteontrols the contribution of the
label information versus the contribution of the geometegatibed by the sample. We apply
CCDR to the 36-dimensional data to create a 14-dimensianékedding by varyings over a
range of values. For justification of our choice &f 14 dimensions see Sectign V-D. In the
process of computing the weights; for the algorithm, we usé-nearest neighbors with = 4
to determine the local neighborhood. Hig. 2 shows the dlaatson error probability (dashed
lines) for the linear classifier vgi after preprocessing the data using CCDR with- 4 and
dimension 14. We observe that for a large range ¢ihe average classification error probability
is greater thar).09 but smaller thar0.095. This performance competes with the performance
of k-nearest neighbors applied to the high-dimensional dakachwis presented in [?] as the
leading classifier for this benchmark problem. Another oletgon is that for small values of
g (i.e., B < 0.1) the probability of error is constant. For such small valdeSo classes in
the lower-dimensional embedding are well-separated amaval-concentrated around the class
centers. Therefore, the linear classifier yields perfeasgification on the training set and fairly
low constant probability of error on the test data is attdife low value of 5. When 5 is
increased, we notice an increase in the classification @maivability. This is due to the fact
that the training data become non separable by any lineasifitx asj increases.

We perform a similar study of classification performance Kemearest neighbors. In Figl 2,

classification probability error is plotted (dotted lines) 5. Here, we observed that an average
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error probability 0f0.086 can be achieved fof ~ 0.5. Therefore k-nearest neighbors preceded
by CCDR outperforms the straightforwakdnearest neighbors algorithm. We also observe that
when g is decreased the probability of error is increased. Thislmam®explained as due to the
ability of k-nearest neighbors to utilize local information, i.e.,dbgeometry. This information
is discarded wher is decreased.

We conclude that CCDR can generate lower-dimensional tiataig useful for global classi-
fiers, such as the linear classifier, by using a small valug, @ind also for local classifiers, such

ask-nearest neighbors, by using a larger valugnd thus preserving local geometry information.

0.24¢
0.2
\
\
0.2
0.18r

+
0.16r

1 ﬂ“ﬂ%

333833848 %‘é-ﬁé%é%ﬁé

0.08;

P(error)

0.0 - )

107 B 10

Fig. 2. Probability of incorrect classification v8.for a linear classifier (dotted line) and for thek-nearest neighbors algorithm
(dashed linev) preprocessed by CCDR0% confidence intervals are presentedsagdor the linear classifier and as for the

k-nearest neighbors algorithm.

D. Dimension Parameter

While the data points it,, may lie on a manifold of a particular dimension, the actual di
mension required for classification may be smaller. Heregxamine classification performance
as a function of the CCDR dimension. Using the entropic gidiptension estimation algorithm

in [?], we obtain the following estimated dimension for each €las

class 112 3|4|5| 6
dimension|| 13| 7| 13| 10| 6| 13
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Fig. 3. Probability of incorrect classification vs. CCDRisngnsion for a linear classifier (dotted ling and for thek-nearest

P(error)

neighbors algorithm (dashed lirg preprocessed by CCDR0% confidence intervals are presentedafor the linear classifier

and as+ for the k-nearest neighbors algorithm.

Therefore, if an optimal nonlinear embedding of the datalccdoe found, we suspect that a
dimension greater thai3 may not yield significant improvement in classification peniance.
Since CCDR does not necessarily yield an optimal embeddiuegchoose CCDR embedding
dimension asl/ = 14 in Section V-C.

In Fig.[3, we plot the classification error probability (damttline) vs. CCDR dimension and
its confidence interval for a linear classifier. We observedrélase in error probability as the
dimension increases. When the CCDR dimension is greatarithtne error probability seems
fairly constant. This is an indication that CCDR dimensidrbas sufficient for classification if
one uses the linear classifier with= 0.5, i.e., linear classifier cannot exploit geometry.

We also plot the classification error probability (dashet)ivs. CCDR dimension and its
confidence interval fok-nearest neighbors classifier. Generally, we observe dseren error
probability as the dimension increases. When the CCDR dinans greater thah, the error
probability seems fairly constant. When CCDR dimensiorhiee, classifier error is below1.
On the other hand, minimum possibility of error obtained &DR dimension 12-14. This
is remarkable agreement with the dimension estimaté3obbtained using the entropic graph

algorithm of [?].
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Fig. 4. Probability of incorrect classification vs. CCDR!snearest neighbors parameter for a linear classifier (ddite o)
and for thek-nearest neighbors algorithm (dashed knegreprocessed by CCDR0% confidence intervals are presented-as

for the linear classifier and as for the k-nearest neighbors algorithm.

E. CCDR'sk-Nearest Neighbors Parameter

The last parameter we examine is the CCDR'searest neighbors parameter. In general, as
k increases non-local distances are included in the lowaedsional embedding. Hence, very
large k£ prevents the flexibility necessary for dimensionality retthn on (globally) non-linear
(but locally linear) manifolds.

In Fig.[4, the classification probability of error for the diar classifier (dotted line) is plotted
vs. the CCDR’sk-nearest neighbors parameter. A minimum is obtaingd-at3 with probability
of error of 0.092. The classification probability of error fdr-nearest neighbors (dashed line) is
plotted vs. the CCDR’s:-nearest neighbors parameter. A minimum is obtainefl at4 with

probability of error of0.086.

VI. CONCLUSION

In this paper, we presented the CCDR algorithm for multiptesses. We examined the per-
formance of various classification algorithms appliedra@€DR for the Landsat MSS imagery
dataset. We showed that for a linear classifier, decreasyiglds improved performance and for
a k-nearest neighbors classifier, increasihgelds improved performance. We demonstrated that
both classifiers have improved performance on the much entdithension of CCDR embedding

space than when applied to the original high-dimensiontl.d&e also explored the effect éf

October 31, 2018 DRAFT



TO BE SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING 19

in the k-nearest neighbors construction of CCDR weight matrix @asgfication performance.
CCDR allows reduced complexity classification such as theali classifier to perform better
than more complex classifiers applied to the original data.an¢ currently pursuing an out-of-
sample extension to the algorithm that does not requirenréng CCDR on test and training

data to classify new test point.
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