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ABSTRACT 

In this work, we propose an entropy-based measure to determine the 

discriminating ability of a feature parameter in identifying the 

correct acoustic models, and a feature parameter weighting scheme 

using this measure during Viterbi decoding. The purpose is to 

emphasize the scores obtained with more discriminating parameters, 

and to de-emphasize the scores with less discriminating parameters. 

Extensive experiments verified that this approach is equally useful 

for different types of features, and can be easily integrated with 

typical existing robust speech recognition approaches. 

1. INTRODUCTION 

Various applications of the automatic speech recognition (ASR) 

technologies in the future have been highly anticipated by many 

people [1]. But the recognition accuracy always plays the most 

dominating role when the real-world applications are considered. 

Many speech features have been proposed to extract important cues 

that are helpful for speech recognition in different ways. The 

Perceptual Linear Predictive (PLP) features [2] differ from the 

widely used MFCC features in the use of Bark-spaced critical bands 

followed by cepstral coefficient computation with the autoregressive 

modeling of the critical band power spectrum. Minimum Variance 

Distortionless Response (MVDR) spectrum estimation was also 

proposed [3, 4] for spectral envelope estimation, which can be used 

to obtain different sets of features including the possibility of 

warping the frequency before spectrum estimation [1, 5, 6, 7]. It has 

been well known that some feature parameters are more useful or 

more important in identifying or distinguishing different acoustic 

models (e.g. the first several MFCC parameters than others). But in 

most speech recognition systems such differences in speech features 

have not been well explored yet. It is natural to believe that when we 

treat all the feature parameters as equally important coefficients as 

has been done in conventional Viterbi decoding, the functions of the 

more discriminating parameters may be smeared out by the 

functions of other parameters. 

In this paper, we propose an entropy-based measure to identify 

the more discriminating feature parameters, and a feature parameter 

weighting scheme to emphasize the acoustic scores obtained with 

these more discriminating feature parameters during recognition. 

The approach is relatively simple and can be directly applied in the 

conventional Viterbi decoding process. Experimental results on the 

AURORA 2 testing environment verified that this approach can be 

equally useful for different types of features including MFCC, PLP 

and MVDR, and can be easily integrated with typical existing robust 

speech recognition approaches to offer even better performance. 

Such results are consistent across a wide range of noise types and 

SNR conditions. 

This paper is organized as follows. The proposed feature 

parameter weighting approach is described in section 2. In section 3 

the experimental results are presented. Section 4 gives our 

conclusions. 

2. PROPOSED APPROACH 

The proposed entropy-based feature parameter weighting scheme is 

as follows. We construct the feature parameter weighting function 

using a training corpus. We first perform forced alignment of each 

utterance in the training corpus with the transcriptions. Then we 

collect the feature vectors of the same class (or the same acoustic 

model) together to train a Gaussian mixture model (GMM) with N 

Gaussian components for each class,  
N

c c, n c, n c, n

n = 1

( ) = (  | ),G k Nx x (1)

where c is the class or model index (c = 1, 2, , C), n is the mixture 

index of the GMM model (n = 1, 2, , N), kc, n is the weight for the 

n-th mixture component c, n c, n(  | )N x  for class c, and c, n  is the set 

of parameters (mean and covariance) of Nc, n( ).

Now for each testing feature vector x(t) at time t, the 

probability density of the d-th feature parameter of x(t), xd(t), on the 

class or acoustic model c can be defined as: 

dc c 1 d' D (t)

d' = 1, ..., D
    d'  d

(t, d)= ... ( ) d ...d ...d | ,xp G x x xx (2)

where d is the index for different feature parameters in x(t) (d = 1, 

2, , D), and D is the total number of feature parameters in x(t).

When all the feature parameters in x(t) are assumed independent of 

each other, the Gaussian mixture model (GMM) Gc(x) in equation (2) 

can be simplified into D independent scalar GMMs for the D feature 

parameters, and pc(t,d) of xd(t) in equation (2) can be reduced to: 
N

c c, n, d c, n, d d c, n, d

n=1

(t, d) =  ( (t) | ),p k N x (3)

where kc, n, d, Nc, n, d( ) and c, n, d  are the same as kc, n, Nc, n( ) and c, n

in equation (1), but reduced to those for a simple feature parameter 

with index d, and xd(t) is the feature parameter in x(t) with index d. 

To define the entropy measure for the feature parameter xd(t),

we convert pc(t, d) into a probability mass function (PMF)-like 

function 
c
(t, d)p of class c as  

C

c c c

c=1

(t, d ) =  (t, d) /  (t, d ),p p p (4)
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and the entropy for xd(t) is then defined as 

C

c c

c = 1

(t, d) = - (t, d)*log (t, d).H p p  (5) 

If the distribution of pc(t,d) in equation (3) across all classes c looks 

like the one in Fig. 1(a), i.e., the scores for different classes are very 

similar, the above entropy H(t,d) will be high, which means the 

discriminating ability of the feature parameter with index d is low. A 

typical example for such a case is that with d = 1 in Fig. 2. In other 

words, even if one of the classes has the highest score, the other 

competing classes have very similar scores, and therefore this 

feature parameter is not very reliable. On the other hand, if the 

distribution of pc(t,d) in equation (3) across all classes c looks like 

the one in Fig. 1(b), i.e., one of the classes has much higher score 

than all the others, the entropy H(t,d) will be low, which means the 

discriminating ability of this feature parameter is high. A typical 

example for such a case is that with d = 2 in Fig. 2. In other words, 

the distribution of the correct class is well separated from those of all 

other classes. Apparently the recognition should rely more on the 

latter than on the former. 

With the above, the feature parameter weighting function W(t,d) 

for xd(t) is defined as 

(t, d) = ( (t, d)) = exp( -  (t, d) ),W f H a H (6)

which is a function of both time index t and parameter index d, 

where a is an empirically determined scaling factor. Note that the 

function f( ) in equation (6) can be a carefully chosen monotonically 

decreasing function, while here the exponential function is used for 

simplicity. 

During the Viterbi decoding process, the log-likelihood of the 

feature vector x(t) in the j-th state of an HMM is calculated as, 

assuming a diagonal covariance matrix, 

D M

j jm d jmd jmd

d=1 m=1

log[ ( (t))] = (t,d) ( log[ c ( (t); , )] ),b W N xx (7)

where j and m are respectively the state and mixture indices of the 

HMM model, cjm is the mixture weight, and 
jmd

 and 
jmd

 are the 

mean and variance for the parameter xd(t) in the m-th mixture of the 

j-th state. So the more discriminating feature parameters will be 

emphasized, and vice versa. 

3. EXPERIMENTAL RESULTS 

The initial experiments reported in this paper were conducted on the 

AURORA 2 testing environment [8] based on a corpus of English 

connected digit strings. Only clean-condition training was used, and 

there are ten different types of noise in the three test sets: sets A, B, 

and C. In the first set of experiments, three sets of speech features 

were tested, i.e., MFCCs, MVDR-based cepstral coefficients, and 

PLP coefficients. In the second set of experiments, we integrated the 

proposed approach with a set of typical robust speech recognition 

approaches including a four-stage front-end and a frame selection 

scheme proposed recently [9]. In these initial experiments, we set N 

to 1 and D to 39. C is 13 because there are 13 classes (word models) 

defined for the AURORA 2 task [8]. 

3.1. Results with Different Features: MFCC, MVDR, and PLP 

The 13 MFCC parameters (C1~C12 and log-E) were obtained with 

the WI007 front-end [8]. The MVDR-based features were obtained 

using  the  frequency-warped  MVDR  algorithm  with  the  warping 

Fig. 1. Distributions of pc(t,d) over the C classes give different 

entropy values: (a) high entropy H(t,d), and (b) low entropy H(t,d). 

Fig. 2. The situation of x(t) that the entropy H(t,d) is high for d = 1, 

but low for d = 2. 

factor  set to 0.1 for spectrum estimation to replace the 

conventional FFT. A well-designed filterbank is also used, while 

everything else is exactly the same as for obtaining MFCC including 

pre-emphasis filtering, windowing and DCT conversion [7]. For 

PLP coefficients, the feature vector consists of 12 PLP coefficients 

and a log-energy term. In all the three cases, 39-dimensional feature 

vectors including the delta and delta-delta components were used to 

train the HMM models. During recognition, the log-likelihood 

scores from different feature parameters were weighted and summed 

using the proposed method, as shown in equation (7). 

The results of applying the proposed feature parameter 

weighting approach on the MFCC features as compared to the 

baseline tests without weighting are shown in Fig. 3(a), (b), and (c), 

respectively for the results averaged over all SNR values (20~0 dB) 

but separated for different types of noise (Fig. 3(a)), those averaged 

over all different types of noise but separated for different SNR 

values (Fig. 3(b)), and those averaged over all different types of 

noise and SNR values but separated for the three test sets A, B, and 

C (Fig. 3(c)). The exact accuracies for the three test sets in Fig. 3(c) 

are also listed in the left part of Table 1. It can be observed that the 

proposed feature parameter weighting approach consistently offered 

improved performance across all testing conditions. In Fig. 3(a), the 

error rate reduction was significant for all types of noise, with good 

examples including 20.73% of error reduction for street noise in test 

set B (accuracy from 61.52% to 69.49%), and 19.67% reduction for 

car noise in test set A (accuracy from 60.60% to 68.35%). In Fig. 

3(b), the recognition accuracy was essentially unchanged for clean 

condition, and slight improved result was obtained for 20 dB SNR. 

The error rate reduction was 31.20% for SNR of 15 dB (from 

85.50% to 90.03%) and 28% for SNR of 10 dB (from 66.95% to 

76.21%). In Table 1, the overall average was improved from 61.08% 

to 67.07%, or an error rate reduction of 15.39%. Parallel results 

were shown in Fig. 4(a), (b) and (c) and listed in the middle part of 

Table 1 for MVDR features, and in Fig. 5(a), (b) and (c) and the 

right part of Table 1 for PLP features. Exactly the same trend as that 

for MFCC can be found for both MVDR and PLP. All these results  
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Fig. 3. Accuracies for the proposed feature parameter weighting 

approach as compared to the baseline tests without weighting, for 

MFCC features: (a) averaged over all SNR values, but separated for 

different types of noise, (b) averaged over all types of noise but 

separated for different SNR values, and (c) averaged over all SNR 

values and noise types but separated for sets A, B, C. 

MFCC MVDR PLP 

Original 
Parameter 

Weighting 
Original 

Parameter 

Weighting 
Original

Parameter 

Weighting

Set A 61.34  68.00  63.86  68.25  63.49 68.99 

Set B 55.75  63.74  62.20  68.72  58.40 64.41 

Set C 66.14  69.46  64.78  65.57  68.45 71.83 

Average 61.08  67.07  63.61  67.51  63.45 68.41 

Table 1. Averaged accuracies (%) for sets A, B, C in Fig. 3(c), 4(c)

and 5(c). 

verified that the entropy-based feature parameter weighting 

approach proposed here can successfully identify the more 

discriminating feature parameters and improve the recognition 

accuracies by properly emphasizing the scores of such parameters. 

3.2. Integration with Typical Robust Speech Recognition 

Approaches 

Here a four-stage feature enhancement front-end and an energy- 

based frame selection algorithm recently proposed [9] were taken as 

typical examples of robust speech recognition approaches to be 

integrated with the feature parameter weighting approach proposed 

in this paper. The four-stage front-end is shown in Fig. 6. CMS and 

CMVN form the first part of this front-end. The second part is then a 

two-stage Principal Component Analysis (PCA) process, consisting 

of a first stage PCA which transforms 14-dimensional MFCC 

features (C0~C12 and log-E) obtained with the WI007 front-end 

into vectors of 13 principal components, and a multi-eigenvector 

(M-eigen) temporal filtering [10] applied on the temporal 

trajectories of the 13 resulting feature parameters obtained in the 

first PCA stage. The energy-based frame selection algorithm, on the 

other hand, uses the local order statistics of the smoothed 

instantaneous energy of signal samples to select the reliable frames 

in a noisy utterance. These reliable frames are then used to estimate 

the mean, variance and various principal components which are 

used in the above four stages [9]. 

The results obtained with the integration of the above four 

stages and frame selection with the feature parameter weighting 

approach proposed here, averaged over all types of noise and all 

SNR values in sets A, B, C, are summarized in Table 2. Column (1) 

of Table 2 are those for the original MFCC without any processing, 

while column (2)(3)(4)(5) are those obtained at the outputs of the 

four stages respectively, as shown in Fig. 6. The first row of the table 

Fig. 4. Accuracies for the proposed feature parameter weighting 

approach as compared to the baseline tests without weighting, for 

MVDR features: (a) averaged over all SNR values, but separated for 

different types of noise, (b) averaged over all types of noise but 

separated for different SNR values, and (c) averaged over all SNR 

values and noise types but separated for sets A, B, C. 

Fig. 5. Accuracies for the proposed feature parameter weighting 

approach as compared to the baseline tests without weighting, for 

PLP features: (a) averaged over all SNR values, but separated for 

different types of noise, (b) averaged over all types of noise but 

separated for different SNR values, and (c) averaged over all SNR 

values and noise types but separated for sets A, B, C. 

Fig. 6. The four-stage feature enhancement front-end [9]. The 

results in each column of Table 2 are obtained at the output of the 

corresponding stage as labeled. 

shows the results without feature parameter weighting, and it can be 

found that the performance was improved when each of the four 

stages was applied one after one. The second row shows the 

corresponding results when the parameter weighting approach was 

applied in addition, and it can be found that reasonable 

improvements were obtained at all stages. The third row shows the 

corresponding results when frame selection was further performed, 

and very good improvements can be obtained at each stage. The last 

row is the total error rate reduction. 
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Processing Stages 
(1) 

MFCC 

(2) 

with CMS 

 (3) 

with 

CMVN 

(4) 

plus PCA

(5) 

plus 

M-eigen

Original[9] 61.08  67.29  69.13  79.77 84.10 

plus Feature 

Parameter Weighting 
66.84 67.93 70.38 80.89 85.26

plus Frame Selection 67.16 74.40 78.97 82.38 86.31

Total Relative Error 

Reduction (%) 
15.62  21.74  31.88  12.90 13.90 

Table 2. Accuracies (%) averaged over all types of noise and all 

SNR values in sets A, B, C, obtained at the outputs of the four stages 

in Fig. 6, with baseline MFCC (original), the feature parameter 

weighting proposed here, and the frame selection algorithm. 

The accuracies for a few typical cases in Table 2, i.e. 61.08% of 

the original MFCC baseline (column (1)), 84.10% with the four 

stages, 85.26% when feature parameter weighting was applied in 

addition, and 86.31% when frame selection was applied in addition 

(all in column (5)), are further analyzed in Fig. 7(a)(b)(c), with 

accuracies averaged over all SNR values but separated for different 

types of noise (Fig. 7(a)), averaged over all types of noise but 

separated for different SNR values (Fig. 7(b)), and averaged over all 

types of noise and all SNR values but separated for sets A, B, C and 

their average (Fig. 7(c)), respectively.  

In Fig. 7(a), the most significant improvements with the 

proposed approach are obtained for babble, car, restaurant, airport, 

and train-station cases. For example, in the case of non-stationary 

airport noise, the relative error rate reduction is about 9.45% (from 

85.78% to 87.12%) with feature parameter weighting applied on the 

four stages, and 23.05% (to 89.05) with frame selection further 

applied. This verified that the proposed entropy-based feature 

parameter weighting approach works well under non-stationary 

noise, and it can be well integrated with the four stages and frame 

selection. In Fig. 7(b), slight degradation occurred in the clean 

speech case, but when SNR value goes down from 20 dB all the way 

to 0 dB, it is clear that the accuracy was improved with the four 

stages, feature parameter weighting, and frame selection applied one 

after one. In the case of 5 dB SNR, for example, the accuracy 

obtained after applying the feature parameter weighting approach 

was as high as 81.58%, while the result for the MFCC baseline is 

only 40.55%, which implied a relative error reduction of 69.02%. 

Further integration with the frame selection approach gives an 

accuracy of 83.75%. Similar improvement can be observed in the 

case of 0 dB SNR, in which the improvement was from 18.27% to 

61.02% with the four stages and feature parameter weighting, and 

62.28% after applying frame selection further. Apparently these 

different approaches can be successfully integrated. Because feature 

parameter weighting gives different weights to the scores of 

different parameters within a feature vector to help the recognizer, 

while the frame selection scheme selects the frames that are more 

reliable among all frames in an utterance to help the four stages, 

their respective merits are complementary and thus additive. From 

the overall average accuracies shown in column (5) of Table 2 or in 

the right-most part of Fig. 7(c), significant improvements can be 

obtained as compared to the MFCC baseline result of 61.08%. 

4. CONCLUSIONS 

In this paper, we propose an entropy-based feature parameter 

weighting scheme to emphasize the acoustic log-likelihood scores of 

the more discriminating feature parameters during the Viterbi 

decoding  process.  The  proposed  approach  can  be  equally  useful  

Fig. 7. Incremental improvements in the accuracies obtained with 

the MFCC baseline, at the outputs of the four stages, plus the feature 

parameter weighting proposed here, and plus the frame selection 

algorithm, for (a) averaged over all SNR values but separated for 

different types of noise, (b) averaged over all types of noise but 

separated for different SNR values, and (c) averaged over all SNR 

values and noise types but separated for sets A, B, C. 

with different kinds of speech features, and can be easily integrated 

with typical existing robustness techniques to offer improved 

robustness for the recognition process. The concept of the feature 

parameter weighting scheme is very simple, and its effectiveness is 

well verified by extensive experimental results. 
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