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ABSTRACT 

Histogram-based Quantization (HQ) has been recently proposed as 
a robust and scalable quantization approach for Distributed Speech 
Recognition (DSR). In this paper, Histogram-based Quantization 
(HQ) is further verified as an attractive feature transformation 
approach for robust speech recognition, Joint Uncertainty 
Decoding (JUD) is developed to be applied with HQ for improved 
recognition accuracy, and the approach was evaluated for both 
cases of robust speech recognition and DSR. In Joint Uncertainty 
Decoding (JUD), we jointly consider and estimate the uncertainty 
caused by both the environmental noise and the quantization errors 
in Viterbi decoding under the framework of HQ. For robust speech 
recognition, HQ was used as the front-end feature transformation 
and JUD as the enhancement approach at the back-end recognizer. 
For DSR, HQ was applied at the client end as a data compression 
process and JUD at the server. The evaluation with Aurora 2.0 
testing environment showed very significant improvements for 
both cases of robust and/or distributed speech recognition.  

1. INTRODUCTION 

Various applications of the automatic speech recognition (ASR) 
technologies in the future have been highly anticipated by many 
people. But the recognition accuracy of ASR systems is very often 
seriously degraded by the mismatch between the training and 
testing environments, hence robustness for ASR technologies with 
respect to the environmental disturbance has always been a key 
issue in real applications. 

On the other hand, the client-server framework for Distributed 
Speech Recognition (DSR) has been widely considered, in which 
speech features are extracted and compressed in the hand-held 
clients and the recognition performed at the server. A new concept 
of Histogram-based Quantization (HQ) was recently proposed to 
be performed at the client for feature compression [1], in which the 
partition cells are dynamically defined by the histogram or order 
statistics of a segment of most recent past samples of the parameter 
to be quantized. Many problems generated due to a fixed VQ 
codebook in conventional DSR are automatically solved with this 
new Histogram-based Quantization (HQ) approach, because no 
fixed codebook is used at all. The mismatch between the corrupted 
feature vectors and the fixed codebook does not exist any longer, 
and most of the disturbance can be absorbed by the dynamic 
histogram [1]. Below in this paper, it is further found that this 
Histogram-based Quantization (HQ) can also be used as a good 
approach for robust feature transformation as well. 

For both the above cases of robust and/or distributed speech 
recognition, the feature vectors used by the recognizer corrupted by 
both the environmental noise and the quantization errors can be 
viewed as random vectors with uncertainty. Unlike the standard 
Viterbi decoding process in which such vectors are considered as 
deterministic, the uncertainty decoding approach considers the 

uncertainty of these random vectors [2,3,4,5]. Approaches for 
robust ASR have been modified in the past to estimate such 
uncertainty produced by the environmental noise [2,3]. Extended 
Cluster Information Vector Quantization (ECI-VQ) was also 
developed to estimate the uncertainty generated in the quantization 
process [4]. However, in such cases, it is actually better to jointly 
consider the uncertainty for the quantized feature vectors caused by 
both the environmental noise and the quantization errors. The 
difficulties are that the environmental noise are hidden in the 
quantized codewords, not only not easy to estimate, but mixed with 
the quantization errors. The mismatch between the noisy feature 
vectors and the fixed VQ codebook usually further degrades the 
recognition performance. As will be clear below, the recently 
proposed Histogram-based Quantization (HQ) approach is able to 
solve to a good degree the problems mentioned above [1]. The 
Histogram-based Quantization (HQ) is therefore taken as the 
fundamental scheme in this paper, on which the Joint Uncertainty 
Decoding (JUD) proposed here is based.  

In this paper, we consider both cases of robust and/or distributed 
speech recognition. We jointly estimate the uncertainty caused by 
both the environmental noise and the quantization errors in an 
ASR system using Histogram-based Quantization (HQ), and 
perform the Joint Uncertainty Decoding (JUD) at the recognizer. 
For robust speech recognition, HQ is used as the front-end feature 
transformation and JUD as the enhancement approach at the back-
end recognizer. For Distributed Speech Recognition (DSR), HQ is 
applied at the client end as a quantization process for data 
compression and JUD at the server.  

2. HISTOGRAM-BASED QUANTIZATION (HQ) 

Histogram Equalization (HEQ) has been proposed to equalize the 
cumulative distributions (or histograms) of both the training and 
testing feature parameters in each temporal span (an utterance or a 
moving segment of frames), and shown to produce much more 
robust features for recognition [6,7,8]. The recently proposed 
Histogram-based Quantization (HQ) actually borrowed this 
concept to perform feature parameter quantization for DSR 
purposes based on the dynamically changing cumulative 
distributions (or histograms) of the feature parameters instead of a 
fixed VQ codebook [1]. Below in this paper we show HQ can be 
used as a robust feature transformation approach as well. 

2.1 General Formulation of HQ 

The concept of HQ is to perform the quantization of a feature 
parameter xt at time t based on the histogram or order statistics of 
that feature parameter within a moving segment of most recent past 
T samples, 1 1[ , . . . , , ]t T t tx x x+ Xt,T, up to the time t being 
considered. As shown in Fig. 1, the values of these T parameters in 
Xt,T are sorted to produce a time-varying cumulative distribution 
function C(y), or histogram, where C(y0)=b0=0 and C(yN)=bN=1, y0

and yN are respectively the minimum and maximum values within 
Xt,T.  The N quantization  levels,  {Di, i=1,2, ,N} are  defined  on  
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Fig. 1. Basic formulation of Histogram-based Quantization (HQ). 

the  vertical  scale in [0,1] and then transformed to the range of  the 
feature parameter on the horizontal scale, [y0, yN], by C-1(y) 
constructed with Xt,T, to be the N partition cells for quantization of 
xt. For example, the quantization level Di, or [bi-1, bi] on the 
vertical scale are transformed to the partition cell [yi-1 , yi] on the 
horizontal scale, where C(yi-1)= bi-1, C(yi)= bi. In other words, the 
quantization here is a mapping relation, which maps the present 
parameter xt being considered to a representative value zi for the 
partition cell [yi-1 , yi] just as the conventional quantization process, 

t i i-1 t i

i-1 t i

  z  ,  if   b  < C(x ) < b , 

                  or   y  <    x    < y , i=1, 2, ..., N.

x (1)

The quantization levels Di, together with its corresponding 

representative value i
z on the vertical scale are derived using a 

cumulative distribution C0(y) for a zero-mean standard Gaussian 
via the Lloyd-Max algorithm. The partition cell [yi-1,yi] on the 
horizontal scale is dynamic which is transformed from Di by the 
time-varying histogram C(y), while the representative value zi on 

the horizontal scale is fixed which is transformed from i
z by the 

standard histogram C0(y). So HQ is based on a hidden codebook 
{(Di, i

z ), i=1,2, ,N} on the vertical scale, but transformed by 
dynamic histogram C(y) into time varying partition cells [yi-1 , yi]
and by a fixed standard histogram C0(y) into the fixed 
representative value zi on the horizontal scale. So the quantization 
codebook is not fixed any longer, and it has been shown that many 
problems with a fixed codebook in conventional DSR framework 
are automatically solved [1]. Note that here HQ is a quantization 
process, but can also be used as a feature transformation process 
for robustness process, in which each parameter xt is transformed 
to its representative value zi for the corresponding partition cell. 
This HQ approach has also been successfully extended to vector 
quantization and verified by very good performance [1]. 

2.2 Robust Nature of HQ 

Conventionally, robust feature extraction and feature quantization 
are respectively for robustness and data compression purposes. HQ 
proposed here, however, automatically integrates the two different 
purposes. When a segment of parameters Xt,T are corrupted by 
small disturbances, all individual values may be changed, but the 
order statistics which produces the partition cells on the horizontal 
scale may remain similar. For example, as shown in Fig. 1, with the 
disturbances, C(y) may be changed to C’(y’). The partition cell for 
the quantization level Di=[bi-1, bi] for  the  disturbed  parameter x’t
may also be changed to [y’i-1, y’i] where C’(y’i-1) = bi-1, C’(y’i)= bi,
which can be quite different from [yi-1, yi]. However, the 
quantization level Di and the corresponding representative value zi

for the disturbed parameter x’t may remain unchanged as long as 
y’i-1 < x’t < y’i, since Di is fixed on the vertical scale, while zi is 
fixed on the horizontal scale.  In other words, the quantization is 
based on  the  quantization  levels Di  on  the vertical scale and the 

histogram C(y), therefore less sensitive to the disturbances on the 
horizontal scale, or the disturbances on the horizontal scale is kind 
of “absorbed” by the dynamic histogram C(y). Although C(y) is 
disturbed into C’(y’), the changes on the quantization results may 
be very limited. Such robustness is obtained by the local order 
statistics for the parameters within the most recent values of the 
parameter, therefore it is dynamic and verified to be able to handle 
various noisy conditions including non-stationary disturbances [1]. 

3. JOINT UNCERTAINTY DECODING (JUD) 

3.1 General Formulation of Uncertainty Observation Decoding 

In standard HMM decoding, the observation probability ( )jb v for 
observing a vector v at state j is  

1

( ) ( ; , ),
M

j jm jm jm

m

b v c N v µ
=

= (2)

where m is the mixture index, ,,jm jm jmc µ are the mixture weight, 
mean, and covariance respectively for the m-th Gaussian mixture in 
state j. Uncertainty observation decoding considers the observation 
vector v in Eq.(2) as a random vector w with a distribution p(o|w), 
where o is a sample value of w. Eq.(2) is therefore extended to, 

( ) ( | ) ( ) .j j

o

b w p o w b o do= (3)

Assuming p(o|w) as a single Gaussian with mean , covariance 

( | ) ~ ( , ),
w w w

p o w N µ , the integration in Eq.(3) can be simplified to   

1

( ) ( , ) | .
w

M

j jm jm jm w

m

b w c N µµ
=

= + (4)

So the standard HMM decoding using Eq.(2) remains unchanged, 
except the variance of each Gaussian in the HMMs is increased by 
a quantity equal to w representing the uncertainty of the 
observation vector. In this way, the decoding can be more based on 
reliable parameters with smaller variance w .

3.2 Joint Uncertainty Decoding (JUD) for HQ  

3.2.1 Uncertainty for quantization errors 

In a HQ partition cell, the representative value zi can be viewed as 
the mean value of a random variable. w  in Eq.(4) can thus be 
estimated for a partition cell [yi-1, yi]  using a training set,  

1

, 1 2
0

1
( [ ( ) ] )

i t i

q i

w t i

y x yi

C C x z
N

−

−

< <
= − (5) 

where the summation is over all parameters yi-1 < xt < yi in the 
training set, and Ni is the total number of such parameters. Because 
the representative value zi was obtained via Lloyd-Max algorithm 
based on the histogram C0( ) for a standard Gaussian distribution, 
all parameters xt in the partition cell need to be transformed back 
via -1

0C ( ) • to evaluate ,q i

w . Because the Lloyd-Max algorithm 
produces tightly quantized levels on high density region and 
loosely quantized levels on low density region to minimize the 
total distortion, the uncertainty observation decoding automatically 
increases the Gaussian variances for the loosely quantized levels. 

3.2.2 Uncertainty for environmental noise 

Under low SNR conditions, the disturbances may be very serious. 
For example in Fig. 1, yi-1 and yi  may be changed to y”i-1 and y”i

and C(y) to C”(y”), or there can be a histogram shift which can’t be 
absorbed by the dynamic histogram. The performance of HQ is 
then inevitably deteriorated. Such a histogram shift may be 
reasonably estimated by -1C (0.5) , because -1

0C (0.5)=0 for a 

standard zero-mean Gaussian. These values of -1|C (0.5)|  averaged 
over a training set for different SNR values were actually found to 
be roughly proportional to the noise variance. Therefore the 

I  126



uncertainty caused by the environmental noise at time t can be 
estimated as  

, 1 2( (0.5)) ,n t

w tCα −= (6)
where Ct ( ) is the histogram for the moving segment at frame 
index t, and α  is a scaling factor determined empirically. This 
uncertainty is different for each frame t.  

3.2.3 Joint uncertainty observation decoding 

The above two types of uncertainty should be jointly considered. A 
reasonable assumption is that for high SNR conditions the 
uncertainty for quantization errors ,q i

w dominates, while for low 
SNR conditions that caused by environmental noise ,n t

w

dominates. Therefore the joint uncertainty can be estimated as  
, , ,m a x ( ,  ) ,i t q i n t

w w w= (7) 

where ,q i

w and ,n t

w are from Eq.(5) and (6). This value is 
different for different partition cell i and different frame t, and can 
be used directly in Eq.(4). Note that the uncertainty estimation here 
is based on HQ quantized features only. Therefore for DSR, it can 
be performed on the server easily without extra cost of bit rate. 

3.3 Histogram Shift Compensation 

As mentioned previously the histogram shift may seriously degrade 
the performance of HQ. In addition to the uncertainty decoding as 
mentioned above, we can also shift the histogram directly to have 

1 (0.5) 0   tC − =                                                                                        (8) 

for all frame t. Much of the serious disturbances can be absorbed 
by such a shift, as will be verified by the experiments below.  

4. EXPERENMENTAL RESULTS 

The experiments below were performed on the AURORA 2.0 
testing environment for English digits strings. To evaluate the 
robustness against mismatched conditions, the clean-speech 
training condition with testing conditions sets A, B and C were 
tested with SNR ranging from 20 dB to 0 dB. The WI007 front-end 
was used to obtain 13 MFCC coefficients (C1~C12 and log energy) 
plus the delta and delta-delta features for recognition. 

4.1 HQ and JUD for Robust Speech Recognition 

In the first set of experiments, we considered the case of robust 
speech recognition, in which HQ as a feature transformation 
technique, i.e. each feature parameter xt is transformed to the 
representative value zi for the corresponding partition cell, and 
JUD was then performed during recognition to improve the 
performance. All the experiments reported here were based on 
order-statistics over segments of most recent past parameter values 
as mentioned in section 2, so there was no time delay. Better 
results were obtainable if such no-delay condition was removed, 
but left out here for space limitation. 

The results are shown in Fig. 2(a), (b) and (c). The five bars in 
each set in the figure are respectively for the well-known histogram 
equalization (HEQ) alone, HQ alone, HQ with histogram shift 
(HQ-s, section 3.3), HQ with histogram shift plus uncertainty for 
environmental noise (HQ-s,n, sections 3.3 and 3.2.2) and HQ with 
hitogram shift plus uncertainty for environmental noise and 
quantization errors (HQ-s,n,q, sections 3.3 and 3.2),  respectively 
averaged over all SNR values but separated for different types of  
noise (Fig. 2(a)), averaged over all different types of noise but 
separated for different SNR values (Fig. 2(b)), and averaged over 
all types of noise and all SNR  values  but  separated  for  sets A, B, 
C (Fig. 2(c)). Here HEQ was equally performed with a moving 
segment of most recent T past parameters, and the same value of 
T=100 was used for all experiments for HEQ and HQ. It can be 

Fig. 2. Comparison of different approaches in this paper for robust 
speech recognition: (a) averaged over all SNR values but separated 
for different noise types in sets A, B, C, (b) averaged over all noise 
types but separated for each SNR value, and (c) averaged over all 
SNR values and noise types but separated for sets A, B, C. 

Accuracy Set A Set B Set C Overall
HEQ 79.47 79.60 80.43 79.83 
HQ-s,n,q 82.40 83.80 83.11 83.10 
Relative error reduction (%) 14.30 20.59 13.73 16.23 
Table 1. Exact accuracies and error rate reduction for HEQ and 
HQ-s,n,q for different testing sets in Fig. 2(c). 

easily found that HQ consistently offered more robust features as 
compared to HEQ in all cases, and with the various approaches 
proposed here performed in the decoding process the performance 
can be consistently improved step by step as well. Also, the 
improvements were more significant for lower SNR cases (Fig. 
2(b)), and for several types of non-stationary noise (Fig. 2(a)). 
Furthermore, the histogram shift compensation (HQ-s, 3rd bar) 
offered more improvements for non-stationary noise such as babble, 
restaurant and airport, than HQ alone (2nd bar, Fig. 2(a)), probably 
because for these types of noise the histogram shift was more 
significant. In addition, there was almost no performance 
degradation for clean or higher SNR conditions (Fig. 2(b)), 
apparently the uncertainty decoding for HQ is able to preserve the 
discrimination among HMMs. It is clear here that quantization 
process certainly produces quantization errors, but with proper 
design of the quantizer and the uncertainty decoding, quantization 
errors and environmental disturbances can in fact be well absorbed 
and compensated for. Exact accuracies for two cases in Fig. 2(c) 
(HQ-s,n,q and HEQ) are also compared in Table 1. Significant 
error rate reduction was achieved in all testing sets. 

 It is important to explain why HQ offered more robust features 
than the popularly used approach of histogram equalization (HEQ), 
and how  HQ  is  different  from  the quantile-based HEQ [8]. HEQ 
performed point-to-point transformation based on the order-
statistics or histogram, which can “absorb” the small disturbances 
to a good degree, although some “residual disturbances” inevitably 
remain because the point-based order-statistics is in any case more 
or less disturbed. The quantile-based HEQ performed a piecewise-
linear approximation of HEQ. It reduced the computation 
complexity for histogram estimation, but didn’t change the point-
based nature of the transformation. HQ, on the other hand, 
performed the transformation by block-based order-statistics, 
therefore the small disturbances within a block (Di in Fig. 1) were 
automatically absorbed. The block-based order-statistics certainly 
introduced uncertainty as well, but with proper choice of the 
number of quantization levels N or the block size, the uncertainty 
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may be reasonably taken care of by the stochastic nature of the 
Gaussian mixtures in the HMMs, and the uncertainty decoding can 
offer extra compensation in addition. For example, in all cases in 
Fig. 2, scalar HQ was always performed with N=8 blocks for all 
parameters and all SNR values. N=8 blocks seemed to be quite 
coarse for feature representation, but the results here indicated that 
the coarse blocks in fact brought robustness, because the small 
disturbances within the blocks were absorbed as mentioned above. 
Of course, it is natural that the best value of N should be SNR 
dependent, for example smaller N is better for lower SNR, and 
Histogram-based Vector Quantization (HVQ) is certainly even 
better [1], but such discussions are left out here for space limitation. 
At least N=8 for all cases for scalar HQ already verified the points 
mentioned here. As in Fig. 2(a), HQ alone turned out to be very 
helpful for babble/restaurant noise as compared to HEQ alone, 
probably because in such cases very often the disturbances of order 
statistics were absorbed by the blocks. For subway noise, on the 
other hand, the improvements of HQ alone compared to HEQ are 
relatively less, probably because the impulse-like disturbances may 
very often exceed beyond the blocks for N=8 here. 

We further compared HEQ with HQ using a different metric, the 
averaged normalized distance between the corrupted features yt and 
the corresponding clean speech features xt,

[ ]
1

,t td E y x=                                                                               (9) 

where the average is over all feature parameters in all the testing 
speech in sets A, B, C, and  is the standard deviation of all the 
clean features xt. Smaller values of d apparently imply the features 
are less influenced by the noise. The results are listed in Table 2 for 
different SNR values. We found in the table that HQ gives smaller 
values of d in all cases. 

4.2 HQ and JUD for Distributed Speech Recognition (DSR) 

For DSR, HQ was applied at the client end to replace the 
conventional Split Vector Quantization (SVQ) [9] for feature 
compression, and JUD performed at the server to improve the 
recognition performance. The results for this set of experiments are 
in Fig. 3(a)(b) and (c). The six bars in each set in the figure are 
respectively for the conventional Split Vector Quantization (SVQ), 
the Extended Cluster Information Vector Quantization (ECIVQ) 
[3], the cascade of HEQ and SVQ (HEQ-SVQ), HQ plus JUD 
considering both environmental noise and quantization errors (HQ-
n,q), and HQ with JUD plus histogram shift (HQ-s,n,q). Fig. 3(a) 
are those averaged over all SNR values but separated for different 
noise types in sets A, B, C, (b) are those averaged over all types of 
noise but separated for different SNR value, while (c) are those 
averages over all types of noise and all SNR values but separated 
for sets A, B, C. In each case the bit rate required for the 
conventional Split Vector Quantization (SVQ) is 4.4 kbps and for 
HQ (all scalar with N=8 and T=100) is 3.9 kbps [1]. We can find 
that ECIVQ performed better than SVQ for sets A, B but slightly 
worse for set C, probably because ECIVQ considered quantization 
noise only, but the channel mismatch for set C might move the 
feature vectors to different partition cells, for which the cluster 
variance was not able to help. HEQ offered very good 
improvements to SVQ (HEQ-SVQ), but HQ proposed here 
consistently improved the performance more in almost all cases, 
and JUD (HQ-n,q) and histogram shift (HQ-s,n,q) further offered 
additional improvements consistently in almost all cases. The exact 
accuracies for HEQ followed by SVQ (HEQ-SVQ) and HQ-s,n,q 
are compared in Table 3. The improvements were significant and 
consistent for all SNR values, including for clean and 20 dB cases. 

Fig. 3. Comparison of different approaches discussed in this paper 
for distributed speech recognition: (a) averaged over all SNR 
values but separated for different noise types in sets A, B, C, (b) 
averaged over all noise types but separated for different SNR 
values, and (c) averaged over all SNR values and noise types but 
separated for sets A, B, C. 

SNR 20dB 15dB 10dB 5dB 0dB -5 dB
HEQ 0.7876 0.8695 0.9516 1.0384 1.1314 1.2276
HQ 0.7172 0.7870 0.8588 0.9362 1.0204 1.1087

Table 2. The averaged normalized distance between clean and 
corrupted speech features under different SNR for HEQ and HQ   

SNR  Clean 20dB 15dB 10dB 5dB 0dB
HEQ-SVQ 98.07 94.95 91.97 85.86 74.45 52.02 
HQ-s,n,q 98.48 96.27 93.90 89.20 78.57 57.58
Error reduction (%) 21.28 26.18 24.02 23.64 16.12 11.58 
Table 3. Exact accuracies and error rate reduction for HEQ-SVQ 
and HQ-s,n,q for different SNR values in Fig. 3(b). 

5. CONCLUSIONS 

Joint Uncertainty Decoding (JUD) under the framework of 
Histogram-based Quantization (HQ) is proposed here in this paper 
for robust and/or distributed speech recognition. Improved 
recognition performance was obtained consistently under all types 
of noise at all SNR values. 
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