
ORDER STATISTIC CORRELATION COEFFICIENT AND ITS APPLICATION TO
ASSOCIATION MEASUREMENT OF BIOSIGNALS

Weichao Xu, Chunqi Chang, Y. S. Hung, S. K. Kwan∗

{wcxu,cqchang,yshung,skkwan}@eee.hku.hk
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong

P. C. W. Fung

hrspfcw@hkucc.hku.hk
Department of Medicine

The University of Hong Kong
Pokfulam Road, Hong Kong

ABSTRACT

In this paper we propose a novel and fast nonlinear associa-
tion measure based on order statistics and rearrangement in-
equality. We employ one episode of heart signal, one episode
of EEG signal and 1000 white Gaussian noises in our study.
Extensive statistical analysis are performed based on one lin-
ear model and one nonlinear model. Comparative studies
with three other prominent methods are presented. Theoreti-
cal derivations and experimental results suggest that our new
method has small biasedness, high sensitivity to changes in
association, fast computational speed, and robustness under
monotone nonlinear transformations.

1. INTRODUCTION

A multitude of methods have been used in the literature of
biosignal processing for many years to measure the associ-
ation between two time series. Among these measures the
Pearson’s linear correlation coefficient [1–3], Spearman’s rho
and Kendall’s tau [4] are perhaps the most prominent.

The indices mentioned above have many advantages but
also some shortcomings. Linear correlation coefficient is very
fast, however it will yield misleading results if nonlinearity is
involved in the system [5]. On the other hand, the two rank
correlation coefficients, Spearman’s rho and Kendall’s tau,
are not as powerful and as fast as Pearson’s coefficient when
measuring linear associations between biosignals; neverthe-
less they are independent of increasing nonlinear transforma-
tions which makes them suitable for many nonlinear cases [4].

Motivated by the shortcomings of the existing methods, in
this paper we propose a new and fast order statistic correlation
coefficient which possesses the advantages of all aforemen-
tioned methods: a) the new method has comparable perfor-
mance with Pearson’s coefficient when measuring linear as-
sociation; b) it runs quite fast (in the order of O(N log(N)));
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and c) it possesses similar properties with the two rank-based
coefficients when nonlinearity is involved.

2. THEORY

2.1. Definition of Order Statistics Correlation

Let (xi, yi), i = 1, . . . , N be two time series of length N .
Rearranging pairwise the two time series with respect to the
magnitudes of x, we get two new series denoted by (x(i), y[i]),
where x(1) ≤ · · · ≤ x(N) are called the order statistics of x
and y[1], . . . , y[N ] the associated concomitants [6]. Revers-
ing the roles of x and y, we also define y(1), . . . , y(N), and
x[1], . . . , x[N ], respectively. We define our new order statis-
tics based correlation, as follows:

rX(x, y) ∆=

N∑
i=1

(x(i) − x(N−i+1))y[i]

N∑
i=1

(x(i) − x(N−i+1))y(i)

(1)

In the sequel we will use rP , rS , rK , and rX to denote the
Pearson’s coefficient, Spearman’s rho, Kendall’s tau, and our
new measure. We may also denote the four measures in gen-
eral as rξ, ξ = X, P, S, K.

2.2. Properties of rX

There are several desirable properties of rX , as follows:
a) rX is limited within [−1, +1];
b) +1(−1) are attained when x and y are in monotonic

increasing (decreasing) relationship;
c) If x and y are independent identically distributed (IID),

the expectation E{rX(x, y)} = 0.
Proof. a) According to the rearrangement inequality [7],

it follows that:

N∑
i=1

x(N−i+1)y(i) ≤
N∑

i=1

x(i)y[i] ≤
N∑

i=1

x(i)y(i) (2)
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and

N∑
i=1

x(N−i+1)y(i) ≤
N∑

i=1

x(N−i+1)y[i] ≤
N∑

i=1

x(i)y(i) (3)

Subtracting (2) by (3) and dividing the difference by∑
(x(i) − x(N−i+1))y(i), we have −1 ≤ rX ≤ 1, whence

the result.
b) Assume yi = φ(xi), i = 1, 2, . . . , N . If φ(·) is an

increasing function, we have y[i] = y(i) for all i. Substitute
this into (1), we have rX = 1. Similarly rX = −1 if φ(·) is a
decreasing function.

c) Denote the numerator and denominator of (1) by U
and V , respectively. Using a Taylor series expansion of U/V
around the expectations E(U), E(V ) and ignoring all terms
of order higher than two, we have [8]

E(rX) ≈ E(U)
E(V )

+ var(V )
E(U)
E3(V )

− cov(U, V )
E2(V )

(4)

Imposing the independence assumption, we have

E(U) =
∑

[E(x(i)) − E(x(N−i+1))]E(y[i]) (5)

Denote the probability density function (PDF) of y[i] by
g[i](y). It is known [9] that

g[i](y) =
∫ +∞

−∞
f(y|x)f(i)(x)dx (6)

where f(y|x) is the conditional density function of y given x
and f(i)(x) the PDF of x(i). The conditional density function
f(y|x) degenerates to f(y) if x and y are independent. Then
we have

E(y[i]) =
∫

yg[i](y)dy =
∫

yf(y)dy

∫
f(i)(x)dx

=
∫

yf(y)dy = E(y)
(7)

Substituting (7) into (5), we have E(U) = 0, and therefore
E(U)E(V ) = 0. On the other hand, via straightforward al-
gebra, we get

E(UV ) =
∑ ∑

E[x(i)x(j)]E[y[i]y(j)]

−
∑ ∑

E[x(i)x(j)]E[y[i]y(N−j+1)]

−
∑ ∑

E[x(N−i+1)x(j)]E[y[i]y(j)]

+
∑ ∑

E[x(N−i+1)x(j)]E[y[i]y(N−j+1)]

(8)

Observing that the probability of y[i] = y(j) equals 1/N , and
using the IID assumption, we have E[y[i]y(j)] = 1

N E(y2),
hence the first item in (8) becomes 1

N E(y2)E[(
∑

xi)2]. Sim-
ilar argument holds for the other three items in (8), which
means E(UV ) is also 0, thus proves that cov(U, V ) = 0.
Substituting these facts into (4), we have E(rX) = 0, which
completes the proof.

Fig. 1. The heart signal and EEG signal used in the study.
The upper one is a smoothed version of a flutter signal, the
lower one is a smoothed version of an EEG signal.

3. METHODS

3.1. Signals Employed in This Study

Biosignals can be visually classified into two categories: a)
spiky semi-periodic signals (such as normal ECG) composing
sharp pulses rested on a flat baseline, and b) signals exhibiting
noise-like patterns (such as EEG or Atrial Fibrillation record-
ings). We employ two episodes of real signals for the purpose
of comparison. One is a second of bipolar intra-atrial flutter
signal recorded and sampled at 1000Hz during electrophysi-
ological procedure [10], the other is a second of EEG signal
(sampling rate 256Hz) from a dataset provided by University
of Tuebingen for BCI Competition 2003 [11]. The EEG sig-
nal was re-sampled at 1000Hz for the aim of consistency. The
two real signals were further filtered respectively by two low-
pass filters. The resulting two signals are denoted by sh and
se, respectively and shown in Fig. 1.

We generated 1000 episodes of independent white Gauss-
ian noises (µ = 0 and σ2 = 1) for the aim of statistical analy-
sis. All the simulated signals contain 1000 samples (N =
1000). Without loss of generality, sζ , ζ = h, e were standard-
ized with mean zero and variance unity before feeding them
into the two models described in the following subsection.

3.2. Linear and Nonlinear Models

In this paper we employ one linear model and one nonlinear
model for comparative studies and denote them respectively
by LM and NM. Under each model, two channels of signals
x and y are generated with sζ , ζ = h, e and 1000 episodes
of white noises described in the last subsection. Four sets of
correlation coefficients between x and y are then computed
for further comparative study. Due to the 1000 noises in-
volved, each rξ becomes a random variate and has a distribu-
tion, which allows us to perform statistical analysis. In both
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of the following models, time index i is from 1 to 1000, n(i)
denotes the noises, r̄ξ and vξ denote the mean and standard
deviation of r̄ξ, respectively. The Linear Model is a regres-
sion model of the form

x(i) = s(i)
y(i) = ρs(i) +

√
1 − ρ2n(i)

(9)

where ρ = {−1,−0.99, . . . , 0.99, 1} characterizes the linear
association. It follows from straightforward algebra that Pear-
son’s coefficient rP is unbiased and hence E[rP (x, y)] = ρ
for any distribution of s(i). Unfortunately this desirable prop-
erty does not hold for the other three coefficients under this
model. The aim of this model is to compare the biasedness
of these three biased estimators as well as their power to dis-
criminate different ρ’s. The nonlinear model used to study the
effect of nonlinar transformations to the four coefficients is as
follows:

x(i) = Tx[β · s(i)]
y(i) = Ty[β{ρs(i) +

√
1 − ρ2n(i)}] (10)

where, in this study, Tx[·] = sgn(·)(·)2 and Ty[·] = exp(·).
The parameter β is to control the extent of nonlinearity (greater
value of β corresponds to stronger nonlinearity), while ρ has
the same meaning as in LM.

3.3. Performance Evaluation

Several methods were used to evaluate the performance of rξ

under both of the two models mentioned above.

3.3.1. Sensitivity to Changes in ρ

Given two distinct ρ1 and ρ2 (ρ2 > ρ1), we have two sets of
coefficients rξ1 and rξ2, and their respective Fisher’s z Trans-
formation [1], zξ1 and zξ2. The Sensitivity ratio (SR) [3] is
defined as:

SRξ =
z̄ξ2 − z̄ξ1√
v2

z1 + v2
z2

(11)

where vz1 and vz2 denote respectively the standard deviation
of zξ1 and zξ2. SR measures the ability of rξ to detect the
changes of the underlying ρ. Greater value of SR indicates
better discrimination in sensitivity. SR is performed on the
resultants of linear model LM and the nonlinear model NM.

3.3.2. Time Complexity Measurement

We analyzed the time complexities of rξ in the language of
big Oh, which is popular in algorithm analysis. We also esti-
mated the relationship between computational loads of rξ ver-
sus the length of signal N from 100 to 1000 with ∆N = 100.
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Fig. 2. The performance of heart signal under the two models.
The left column shows rξ − ρ vs. ρ; the right column shows
the SR of the four measures. The upper row corresponds to
the performance under the linear model; the lower row to the
performance under the nonlinear model. It is noteworthy that
in the left-hand panels, the nearer a curve to the zero line, the
smaller the corresponding biasedness.

4. RESULTS

Fig.2 and Fig.3 show respectively the results of sh and se

under the two models. The left columns of the Fig.2 and
Fig.3 illustrate the biasedness of the four measures under the
two models, whereas the right columns depict the correspond-
ing sensitivity ratios. It is clear that the performance can be
ordered as SRP > SRX > SRK > SRS under the lin-
ear model. On the other hand, the performance can be or-
dered as SRK > SRS > SRX > SRP under the nonlin-
ear model (β = 2). The fastest method is Pearson’s co-
efficient rP having a linear time complexity of O(N). Our
new method rX and Spearman’s rho are of the same order
O(N log(N)), since sorting operation dominants the compu-
tational time of both methods. However, because of the extra
procedure of ranking involved in calculation of rS , we can
expect that rX is a little faster than rS . Kendall’s tau rK is
the slowest method compared to other three coefficients. The
core operation of rK is to calculate the number of concordant
and discordant pairs, which requires N(N − 1)/2 operations.
Therefore, the time complexity of rK is of order O(N2).

To confirm this result we estimated the relationship be-
tween computational loads of rξ versus the length of signal
N , where N begins at 100 and increases by 100 successively
till N = 1000. All the computational speed tests were per-
formed in Matlab 7.0 environment on a Pentium powered PC.
For each pair of time series of size N , the algorithms for com-
puting rξ were run for 1000 times. The results are presented
in Fig.4, which are consistent with our analysis.
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Fig. 3. The performance of EEG signal under the two models.
The left column shows rξ − ρ vs. ρ; the right column shows
the SR of the four measures. The upper row corresponds to
the performance under the linear model; the lower row to the
performance under the nonlinear model. It is noteworthy that
in the left-hand panels, the nearer a curve to the zero line, the
smaller the corresponding biasedness.
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Fig. 4. Results of comparative CPU time test for four coef-
ficients studied. A logarithmic scale is used for better visual
effect.

5. CONCLUSION

Our new measure rX appears to play the role of a “miss-
ing link” between Pearson’s coefficient and Spearman’s rho
and Kendall’s tau. It enjoys some advantages of all the three
method employed in our comparative studies. In most cases,
rX is not optimal, but it usually is the second best compared
to rP , rS , and rK . This feature at least avoids the worst re-
sults in practice when one has no prior knowledge whether
nonlinearity exists in the system.
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