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ABSTRACT

Time-frequency-autoregressive (TFAR) models allow the parsimo-
nious modeling of underspread nonstationary random processes and
are physically meaningful due to their formulation in terms of de-
lays and Doppler frequency shifts. Here, we derive least-squares
(LS) and maximum-likelihood (ML) methods for TFAR parameter
estimation as well as approximative LS and ML methods specifi-
cally suited for the underspread case. We show that the LS, under-
spread LS, and underspread ML estimators are equivalent to esti-
mators based on linear time-frequency Yule-Walker (TFYW) equa-
tions. The exact ML estimator, on the other hand, requires numeri-
cal maximization but yields better estimation accuracy than TFYW
techniques. We also discuss the application of block-based TFAR
estimation to the spectral analysis of signals with arbitrary length.

1. INTRODUCTION

1.1. Review of the TFAR Model

Time-frequency-autoregressive (TFAR), TF-moving-average (TF-
MA), and TFARMA models have been introduced as parsimonious
models for nonstationary finite-length random processes x[n], n =
0, . . . , N−1 [1,2]. These models are physically intuitive because of
their formulation in terms of time shifts (delays) (Tmx)[n] = x[n−

m] and frequency shifts (Doppler shifts) (Mlx)[n] = ej 2π

N
lnx[n].

The TFAR(MA, LA; LB) model [1], in particular, is defined by
the input-output relation

x[n] = −

MAX
m=1

LAX
l=−LA

am,l (Sm,l x)[n] +

LBX
l=−LB

b0,l (Ml e)[n]. (1)

Here, Sm,l
�
= M

l
T

m is the TF shift operator acting as (Sm,l x)[n] =

ej 2π

N
lnx[n − m]; e[n] is stationary white innovations noise with

variance 1; MA and LA denote the delay and Doppler model orders,
respectively; LB denotes the Doppler model order of the TFMA
part (see below); the MA(2LA+1) constants am,l, m = 1, . . . , MA,
l = −LA, . . . , LA are the TFAR parameters; and the 2LB + 1 con-
stants b0,l, l = −LB, . . . , LB are TFMA parameters. For simplicity
and to enable the application of efficient FFT algorithms, we will
think of our signals x[n] as being periodic with period N , so T

m

is actually a cyclic time shift operator (we could write more explic-
itly (Tmx)[n] = x[(n−m) mod N ]). The second term in (1) is
a nonrecursive component that corresponds to a degenerate, zero-
delay TFMA(0, LB) model. We can write this latter component as

b0[n]e[n] with b0[n] =
PLB

l=−LB
b0,l ej 2π

N
nl. The factor b0[n] ≥ 0

models a time-varying innovations variance |b0[n]|2 that cannot be
modeled by the pure TFAR part.

1.2. State of the Art and Contribution

A central problem is the estimation of the TFAR parameters am,l

from a single realization of the nonstationary process x[n]. We have
previously proposed the TF-Yule-Walker (TFYW) method and the

underspread TFYW method for TFAR parameter estimation [1].
These methods are motivated by the Yule-Walker method for sta-
tionary AR estimation [3]. The underspread TFYW method ex-
ploits the underspread property satisfied by most practical processes
to achieve a significant reduction of computational complexity.

Both for stationary AR models and for nonstationary (time-vary-
ing) AR models using a basis expansion of the time-varying AR co-
efficients, least-squares (LS) and maximum-likelihood (ML) meth-
ods for parameter estimation have been proposed in the literature
[3, 4]. In this paper, we develop LS and ML methods for (nonsta-
tionary) TFAR parameter estimation as well as “underspread ver-
sions” of these methods. We show that the LS method is equivalent
to the TFYW method and the underspread LS and ML methods are
equivalent to the underspread TFYW method. We finally compare
the performance of the ML estimator to the underspread TFYW
method and describe a simple but practically useful method to ex-
tend TFAR spectrum estimators to signals of arbitrary length.

Our paper is organized as follows. The LS and ML methods for
TFAR parameter estimation along with their underspread versions
are developed in Sections 2 and 3, respectively. Simulation results
are presented in Section 4.

2. LEAST-SQUARES ESTIMATORS

In this section, we develop the LS method for TFAR parameter
estimation as well as an approximate LS method that is suited for
underspread TFAR models. We will show that these methods can
be formulated as TFYW methods.

2.1. The LS TFAR Estimator

We start by rewriting the TFAR model (1) as

x[n] = −

MAX
m=1

p
T [n] θm x[n−m] + b0[n]e[n] ,

with the length (2LA+1) vectors θm
�
=
ˆ
am,−LA · · · am,LA

˜T
and

p[n]
�
=
ˆ
e−j 2π

N
LAn · · · ej 2π

N
LAn
˜T

. A further stacking gives

x[n] = −s
T
x [n] θ + b0[n]e[n] ,

with the length MA(2LA + 1) vectors θ
�
=
ˆ
θT

1 · · · θT
MA

˜T
and

sx[n]
�
=
ˆ
pT [n] x[n−1] · · · pT [n] x[n−MA]

˜T
(note that in the

definition of sx[n] we actually use x[(n−m)mod N ]). Finally,

defining the length N vectors x
�
=
ˆ
x[0] · · · x[N−1]

˜T
and u

�
=ˆ

b0[0]e[0] · · · b0[N−1]e[N−1]
˜T

as well as the N ×MA(2LA+1)

matrix Sx
�
=
ˆ
sx[0] · · · sx[N−1]

˜T
, we obtain the following linear

regression model
x = −Sxθ + u .

Under the assumptions that N ≥ MA(2LA+1) and that Sx has full
column-rank, the LS estimator (LSE) for θ is given by [3, 5]

θ̂LS
�
= arg min

θ
‖x−Sxθ‖2 = −(SH

x Sx)−1
S

H
x x . (2)
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Because u is zero-mean, the TFAR LSE θ̂LS is unbiased [5]. We
note that the stationary AR LSE [3] is reobtained for LA = 0.

The LS method does not yield estimates of the zero-delay TFMA
parameters b0,l, l = −LB, . . . , LB. A method for estimating these
parameters is discussed in [1].

2.2. Equivalence to the TFYW Estimator

We next develop a formulation of the TFAR LSE (2) in terms of the
ambiguity function

Âx[m, l]
�
= F

n→l
{r̂x[n, m]} =

N−1X
n=0

r̂x[n, m] e−j 2π

N
ln.

Here, r̂x[n, m]
�
= x[n] x∗[n−m], n = 0, . . . , N−1, m = −N/2,

. . . , N/2− 1 is an unbiased estimator of the cyclic autocorrela-

tion rx[n, m]
�
= E{x[n] x∗[n−m]} (recall that this is short for

E{x[n] x∗[(n−m) mod N ]}).

Defining the MA(2LA+1) × MA(2LA+1) matrix Âx
�
= SH

x Sx

and the length MA(2LA+1) vector âx
�
= SH

x x, (2) can be rewritten
as

Âxθ = −âx . (3)

The matrix Âx is a block matrix with matrix blocks of size (2LA+
1) × (2LA+1) that are given by

Â
(m,m′)
x =

N−1X
n=0

p
∗[n]pT [n] x[n−m′]x∗[n−m] ,

m, m′ = 1, . . . , MA ,

where p∗[n]pT [n] is a (2LA+1) × (2LA+1) Toeplitz matrix withˆ
p∗[n]pT [n]

˜
l,l′

= e−j 2π

N
(l−l′)n, l, l′ = −LA, . . . , LA. Hence,

the matrix blocks Â
(m,m′)
x are themselves Toeplitz with elements

ˆ
Â

(m,m′)
x

˜
l,l′

=
N−1X
n=0

r̂x[n−m′, m−m′] e−j 2π

N
(l−l′)n

= Âx[m−m′, l−l′] e−j 2π

N
m′(l−l′) ,

l, l′ = −LA, . . . , LA . (4)

In a similar way, it can be seen that âx =
ˆ
â

(1)T
x · · · â

(MA)T
x

˜T
with the length (2LA+1) vectors â

(m)
x given byˆ

â
(m)
x

˜
l
= Âx[m, l] , l = −LA, . . . , LA . (5)

The matrix Âx is a “Toeplitz-block” (TB) matrix, which is a per-
mutation of the block-Toeplitz (BT) matrix involved in the TFYW
equations [1]. This permutation is due to the different stacking
order (with respect to m and l) that was used in [1] to formulate
the TFYW equations. Use of the (mathematically equivalent) BT
stacking of [1] allows an efficient inversion of the BT matrix with
complexity O(M3

AL2
A) by means of the Akaike algorithm [6].

Comparing the expressions (4) and (5) to the corresponding ex-
pressions involved in the TFYW equations [1], it is readily shown
that, in spite of the different stacking, the LS equation (3) is equiv-
alent to the TFYW equations. Thus, the LSE is mathematically
equivalent to the TFYW method proposed in [1]. Note that this
equivalence holds in the strict sense only if the cyclic autocorrela-
tion estimator r̂x[n, m] is used.

2.3. The Underspread TFAR LSE

We can write Âx as the Hadamard (elementwise) product Âx =

Ûx � P , with an MA(2LA +1) × MA(2LA +1) Toeplitz/block-
Toeplitz (TBT) matrix Ûx and an MA(2LA+1)×MA(2LA+1) TB
phase matrix P . We have Ûx = toep{Û

(m)
x }m=MA−1,...,−MA+1

with the (2LA+1)×(2LA+1) Toeplitz blocks [Û
(m)
x ]l,l′ = Âx[m, l−

l′], l, l′ = −LA, . . . , LA. Furthermore, P has MA identical matrix

rows of the form
ˆ
P1 · · · PMA

˜
where [Pm]l,l′ = e−j 2π

N
m′(l−l′),

l, l′ = −LA, . . . LA.
The underspread case is defined by MALA � N . Here, the

elements e−j 2π

N
m′(l−l′) of P are approximately 1 and hence Âx =

Ûx � P ≈ Ûx. It follows that the TFAR LSE θ̂LS = −Â−1
x âx

(cf. (3)) is approximated by the underspread TFAR LSE (ULSE)

θ̂ULS
�
= −Û

−1
x âx . (6)

The TBT matrix Ûx can be inverted m-recursively by means of the
Wax-Kailath algorithm [7], which is roughly twice as fast as the
Akaike algorithm for inverting BT matrices. Thus, the underspread
approximation yields a significant reduction of complexity. The m-
recursive implementation of the ULSE can easily be combined with
the nested order estimation procedures proposed in [2].

Comparing the ULSE in (6) with the underspread approximation
to the TFYW equations described in [1], it is readily seen that the
two are equivalent. Thus, the ULSE is identical to the underspread
TFYM method of [1]. Finally, for LA = 0 the ULSE degenerates
to the stationary AR LSE just as the LSE does.

3. MAXIMUM-LIKELIHOOD ESTIMATORS

The ML estimators developed in this section are based on an in-
novations system representation of the TFAR process x[n]. The
input-output relation (1) can be expressed as (Ax)[n] = (B0e)[n]
with the causal linear time-varying systems

A
�
=

MAX
m=0

LAX
l=−LA

am,l Sm,l , B0
�
=

LBX
l=−LB

b0,l M
l ,

where a0,l
�
= δ[l] (i.e., A is a monic system). Thus, the innovations

system representation of the TFAR process (1) is

x[n] = (He)[n] with H
�
= A

−1
B0 .

This is short for

x[n] =

N/2−1X
m=0

h[n, m] e[n−m] , n = 0, . . . N−1 ,

where h[n, m] is the impulse response of the innovations system
H. In matrix-vector notation, this can also be written as

x = He , (7)

with length N vectors x and e. Neglecting cyclic components,
the N ×N matrix H with elements [H ]n,n′ = h[n, n−n′] is
lower triangular because H is a causal system. In the following, we

combine the parameter vectors θ and b0
�
= [b0,−LB · · · b0,LB ]T into

the vector η = [θT bT
0 ]T, which determines H .

3.1. The ML TFAR Estimator

Assuming the TFAR process x[n] to be circularly symmetric com-
plex Gaussian, the probability density function of x is given by [5]

p(x;η) =
1

πN det R
e−xHR−1x,

with the correlation (covariance) matrix R = E{xxH} = HHH.
Our notation emphasizes that p depends on the parameter vector
η; this dependence is via R. The log-likelihood function (LLF)

l(η; x)
�
= log p(x;η) is, up to a constant term that is irrelevant,

l(η; x) = − log detR − x
H

R
−1

x . (8)
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Because A is monic, the elements on the diagonal of the lower trian-
gular matrix H are b0[n], and thus log det R = log det HHH =PN−1

n=0 log b2
0[n]. Furthermore, using (7), we have xHR−1x =

xHH−HH−1x = eHe = ‖B−1
0 A x‖2, where A and B0 are the

N×N matrices corresponding to A and B0, respectively. Note that
the inversion of B0 is trivial because B−1

0 = diağ 1
b0[n]

¯N−1

n=0
.

Thus, the LLF can be expressed as

l(η; x) = −
N−1X
n=0

log b2
0[n] − ‖B−1

0 A x‖2 .

The ML estimator (MLE) η̂ML
�
= arg maxη l(η; x) is therefore

given as

η̂ML = arg max
η

(
−

N−1X
n=0

log b2
0[n] − ‖B−1

0 A x‖2

)
,

where b0[n] depends on the b0,l’s as b0[n] =
PLB

l=−LB
b0,l ej 2π

N
nl.

The LLF can be maximized by any standard numerical method.
The iterative maximization can be initialized by the TFAR ULSE

estimator (6), i.e, η̂(0) �
= [θ̂T

ULS b̂T
0 ]T, where b̂0 is calculated as

described in [1]. In the ith iteration, the maximization algorithm
requires l(η̂(i); x), i.e., the LLF evaluated at the current parameter
estimate η̂(i), and returns an improved parameter vector η(i+1).

3.2. The Underspread TFAR MLE

A simplification of the MLE can be achieved by an underspread ap-
proximation. In what follows, we will use the time-varying transfer
function (TVTF) of a linear time-varying system K,

TK[n, k]
�
= F

m→k
{k[n, m]} =

N/2−1X
m=−N/2

k[n, m] e−j 2π

N
km,

where k[n, m] is the impulse response of K.
The quadratic form xHR−1x occurring in the LLF can be writ-

ten as an inner product in the TF domain:

x
H

R
−1

x =
1

N

N−1X
n=0

N/2−1X
k=−N/2

TR−1 [n, k] bC∗
x[n, k] , (9)

where TR−1 [n, k] is the TVTF of the inverse of the correlation op-
erator R = HH

† (H† denotes the adjoint of H) and bCx[n, k] is the
Rihaczek distribution [8],bCx[n, k]

�
= F

m→k
{r̂x[n, m]} = F

m→k
F

l→n

−1{Âx[m, l]} .

For an underspread system H, the TVTF of R
−1 = (HH

†)−1 =
H

−†
H

−1 can be approximated as TR−1 [n, k] = TH−†H−1 [n, k] ≈
|TH−1 [n, k]|2 [9]. It can furthermore be shown that the TVTF of
H

−1 can be expressed (exactly) as

TH−1 [n, k] =
TA[n, k]

TB0
[n]

, (10)

where

TA[n, k] = N F
m→k

F
l→n

−1{am,l} , TB0
[n] = b0[n] . (11)

With (10) and (11), our underspread approximation for TR−1 [n, k]

becomes TR−1 [n, k] ≈
˛̨

TA[n,k]
b0[n]

˛̨2
, and hence (9) gives

x
H

R
−1

x ≈
1

N

N−1X
n=0

N/2−1X
k=−N/2

|TA[n, k]|2 bC∗
x[n, k]

b2
0[n]

. (12)

Inserting (12) as well as the identity log det R =
PN−1

n=0 log b2
0[n]

into (8) shows that l(η; x) can be approximated by

l̃(η; x)
�
= −

N−1X
n=0

"
log b2

0[n] +

PN/2−1

k=−N/2
|TA[n, k]|2 bC∗

x[n, k]

Nb2
0[n]

#
.

Maximization of l̃(η; x) can only be done numerically. To sim-
plify the problem, we assume that the TFAR innovations process
b0[n]e[n] is stationary with a given variance σ2

e . This corresponds
to b0[n] ≡ σe or equivalently b0,l = σeδ[l]. The approximate LLF
then reduces to

l̃(θ,σ2
e ; x) = −N log σ2

e −
1

Nσ2
e

N−1X
n=0

N/2−1X
k=−N/2

|TA[n, k]|2 bC∗
x[n, k].

(13)
Setting the derivative of (13) with respect to σ2

e equal to zero yields
the innovations variance

cσ2
e =

1

N2

N−1X
n=0

N/2−1X
k=−N/2

|TA[n, k]|2 bC∗
x[n, k] . (14)

This still depends on the unknown am,l’s. Inserting (14) into (13),
we obtain the partially optimized approximate LLF

l̃(θ; x) = −N log

 
1

N2

N−1X
n=0

N/2−1X
k=−N/2

|TA[n, k]|2 bC∗
x[n, k]

!
− N.

The “underspread MLE” (UMLE) for θ is hence obtained as

θ̂UML
�
= arg max

θ
l̃(θ; x)

= arg min
θ

8<:
N−1X
n=0

N/2−1X
k=−N/2

|TA[n, k]|2 bC∗
x[n, k]

9=; .

We thus differentiate
PN−1

n=0

PN/2−1

k=−N/2 |TA[n, k]|2 bC∗
x [n, k] with

respect to am0,l0 and equate the result to zero:

N−1X
n=0

N/2−1X
k=−N/2

bC∗
x [n, k]

∂(TA[n, k] T ∗
A [n, k])

∂am0,l0

=
N−1X
n=0

N/2−1X
k=−N/2

bC∗
x [n, k] T ∗

A [n, k]
∂TA[n, k]

∂am0,l0

=

N−1X
n=0

N/2−1X
k=−N/2

bC∗
x [n, k] T ∗

A [n, k] e−j 2π

N
m0kej 2π

N
nl0

=
“

F
n→l0

F
k→m0

−1 bCx[n, k] TA[n, k]
”∗

= 0 , (15)

where we have used (11). Because multiplication in the (n, k)-
domain corresponds to 2-D convolution in the (m, l)-domain, (15)
is equivalent to the following equation for the UMLE θ̂UML:

MAX
m=0

LAX
l=−LA

Âx[m0−m, l0−l] âm,l = 0 ,

m0 = 1, . . . , MA , l0 = −LA, . . . , LA .

This equation is the underspread TFYW equation of [1] and equiv-
alent to the equation (6) defining the ULSE. Hence, the UMLE is
identical to the ULSE and also identical to the underspread TFYW
method [1].
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Figure 1: Normalized MSE (in dB) of the MLE (solid line) and the
underspread TFYW estimator (dashed line) versus (a) block length
N , (b) delay order MA, (c) Doppler order LA.

4. SIMULATION RESULTS

4.1. Performance of MLE and Underspread TFYW Estimator

We compare the performance of the exact MLE discussed in Sec-
tion 3.1 and the underspread TFYW estimator (equivalently, the
ULSE of Section 2.3 and the UMLE of Section 3.2) by means
of simulations. We considered a TFAR(3, 2) process with b0,l =
σeδ[l] (i.e., stationary innovations process, LB = 0) and length
N = 256. The 15 complex-valued TFAR parameters am,l and
the positive innovations variance σ2

e were estimated from a single
process realization x[n]. This estimation was repeated for 100 real-
izations of the process and the empirical mean-square error (MSE)
of each estimator was obtained by averaging over all parameters
and all realizations. We then repeated the experiment for other
processes constructed by varying N or MA or LA. The iterative
maximization required for calculating the MLE was performed by
means of the MATLAB function fmincon.m.

Figure 1 shows the normalized MSEs. It is seen that the MLE
outperforms the underspread TFYW estimator by (typically) about
1–2 dB. The MSE generally increases for larger model orders MA,
LA and for smaller block length N .

4.2. TFAR Spectral Analysis of Arbitrarily Long Signals

The TFAR model can be used for time-varying spectral analysis.
The TFAR spectrum estimate of a finite-length signal x[n], n =
0, . . . , N−1 is defined as (cf. (10))

Sx[n, k]
�
=
˛̨
T

Ĥ
[n, k]

˛̨2
≈

˛̨̨̨
T

B̂0
[n]

T
Â
[n, k]

˛̨̨̨2
,

where T
Â
[n, k] = N Fm→kF

−1
l→n{âm,l} and T

B̂0
[n] = b̂0[n] (cf.

(11)) are estimates of the TVTFs TA[n, k] and TB0
[n], respectively.

The finite block length, cyclic formulation used in the definition
of the TFAR model enables application of efficient FFT techniques.
Practical complexity considerations imply a restriction of the signal
length N . Signals of arbitrary length can be analyzed by applying
our TFAR estimators to successive signal blocks of length N and
concatenating the resulting time-varying TFAR spectra. Disconti-
nuities and aliasing artifacts (caused by the cyclic formulation) at
the block boundaries can be reduced by using overlapping blocks
and windowing, as described in what follows.

The overall signal is segmented into blocks of length N with No
samples overlap. Each signal segment is multiplied by a raised co-
sine window of duration N with No samples rolloff (this reduces
the amount of aliasing artifacts and artificial nonstationarities at the
block boundaries). The concatenation of the TFAR spectrum esti-
mates obtained for the individual segments then uses an overlap-
add approach. Here, each spectrum estimate is multiplied (with
respect to n) by the same raised-cosine window as before in order
to produce smooth transitions within the overlap intervals.

Figure 2 shows results of TFAR spectral analysis for a “long”
signal (length 1024) consisting of three FM components and white
noise (SNR = 10 dB). Note that this signal—even without the
noise—does not conform to the TFAR model. The block length
was N = 256 and the overlap length No was chosen as 0, 15,
and 31. The TFAR orders MA, LA, LB were determined by the
MDL order-estimation criterion described in [2]. It is seen that
the overlapping-windowing technique significantly reduces discon-
tinuities at the block boundaries.

0 255 → n 767 1023

1/2

→
θ

−1/2

(a)

0 255 → n 767 1023

1/2

→
θ

−1/2

(b)

0 255 → n 767 1023

1/2

→
θ

−1/2

(c)

0 255 → n 767 1023

1/2

→
θ

−1/2

(d)

Figure 2: Results of overlapped/windowed TFAR spectral analysis:
(a) Spectrogram of the noisy signal, (b)–(d) estimated TFAR spectra
for (b) no overlap, (c) 15 samples overlap, (d) 31 samples overlap.
(Horizontal axis is time, vertical axis is normalized frequency, ver-
tical lines indicate overlap intervals.)

5. CONCLUSIONS

The least-squares (LS) and maximum-likelihood (ML) TFAR pa-
rameter estimators derived in this paper extend the known LS and
ML techniques for stationary AR estimation to the nonstationary
case. A reduction of computational complexity can be achieved
by exploiting the underspread property satisfied by most practi-
cal processes. We showed that the LS, underspread LS, and un-
derspread ML estimators are equivalent to estimators based on the
time-frequency Yule-Walker (TFYW) equations, whereas the exact
ML estimator can yield a performance improvement over TFYW
techniques.
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