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ABSTRACT

This article proposes a new approach to the deconvolution of
Electron Energy Loss Spectra, used for material characteri-
zation. This approach is based on local filters with varying
bandwidth, adapted to the local (non-stationary) character-
istics of the signal to restore. The local filter synthesis is
achieved by means of three parameters determined by opti-
mizing a compound criterion. The effectiveness of this ap-
proach is shown on an example.

1. INTRODUCTION

The Electron Energy Loss Spectroscopy (EELS) is a tech-
nique used to characterize material. It can provide informa-
tion about the chemical composition, the crystallographicstruc-
ture and the electronic properties of the studied specimen.
When used in Transmission Electron Microscope, this infor-
mation may be directly obtained if the sample is thin as com-
pared to the mean free path for inelastic scattering. When
the thickness of the sample increases, multiple scatteringphe-
nomena occur, resulting in a self convolution process which
highly complicates the spectra interpretation. Deconvolution
is used to remove this multiple scattering as well as the dis-
torsion introduced by the instrument itself.

The classical approaches to EELS deconvolution [1, 2]
can be interpreted in terms of linear invariant low-pass filter-
ing and, consequently, they can be efficiently implemented.
But they suffer one major shortcoming which results from
they global (isotropic) character of the low-pass filter. Such
a global filter will act is the same way on the signal, what-
ever the local (non stationary) characteristics of the signal are,
while it appears intuitively sound to adapt the filter to these lo-
cal characteristics. Basically, the filter bandwidth should be
greater in the dynamical parts of the signal and smaller in its
non dynamical parts. This is such an approach that we are
developing now.

2. MODELLING OF THE DIRECT PROBLEM

2.1. The EELS Spectrum

A typical Electron Energy Loss Spectrum may be decom-
posed into 3 parts:
– zero loss peak (Instrument response): The most intense
peak centered on0 is representative of the electrons which
are transmitted without suffering any measurable energy loss,
that are those which can be regarded as being un-scattered;
– low-loss Region (LL): The low-loss region is typically lo-
cated between0 and100 eV. This region is representative of
inelastic scattering with outer-shell (valence) electrons;
– core-loss Region (CL): At high energy loss (> 100eV )
the electron intensity decreases according to some fairly high
power of energy loss. Superimposed on this smoothly de-
creasing signal are ionisation edges which represent inner-
shell excitation.

From a signal processing point of view, the ionisation
edges are the most challenging, because they are composed
of abrupt edges on which are superimposed peaks of variable
amplitude and width (see figure 2).

2.2. Model of the EELS Spectrum

LetZ(E) be the zero-loss peak with intensityI0 =
∫

Z(E)dE

whereE represents the energy loss. Assuming independent
scattering events, the model of the EELS spectrum, noted
J(E), is given by [1]:

J(E) = Z(E)⋆

{

δ(E) +
S(E)

I0
+

S(E) ⋆ S(E)

2! I2
0

+
S(E) ⋆ S(E) ⋆ S(E)

3! I3
0

+ ...

}

, (1)

whereS(E) represents the single scattering signal which has
to be estimated. Definingj(ω), s(ω), z(ω) as the Fourier trans-
forms of J(E), S(E), Z(E), the Fourier transform of equa-
tion 1 is

j(ω) = z(ω) exp

(

s(ω)

I0

)

. (2)



Due to the properties of the self-convolution, the EELS spec-
trum in the core loss regions may be well approximated by [1]

JCL(E) ≃ JLL(E) ⋆ SCL(E), (3)

whereJCL(E) et SCL(E) represent the EELS and single
scattering signals in the high energy loss region.JLL(E) cor-
responds to the EELS signal in the low loss region.

3. CLASSICAL APPROACHES TO EELS
DECONVOLUTION

Because EELS deconvolution is an ill posed problem, clas-
sical approaches use low-pass filters to regularize the inverse
filter (least square) solution [1, 2]. For core loss region spec-
tra, the use of model (3) leads to the solution :

SCL(E) = F
-1

{

h(ω)
jCL(ω)

jLL(ω)

}

. (4)

For low loss region spectra, the use of model (2), results in
the following regularized solution :

S(E)

I0
= F

-1

{

h(ω) log

(

j(ω)

z(ω)

)}

. (5)

An alternative solution is given by [2] :

S(E)

I0
= F

-1

{

log

(

1 + h(ω)
j(ω) − z(ω)

z(ω)

)}

. (6)

The point is that, for all cases, the low pass filterh(ω) should
be chosen to manage at best the tradeoff between resolution
and noise amplification.

4. A LOCAL FILTERING APPROACH TO EELS
DECONVOLUTION

In fact, such a low passed filtering approach suffers one major
shortcoming which results from its global (isotropic or shift
invariant) character. The basic idea of the proposed approach
is to adapt the filter to the local characteristics of the sig-
nal which has to be restored. Basically, the filter bandwidth
should be greater in the dynamical parts of the signal and
smaller in its non dynamical parts. This leads us to consider
local filters instead of global filter. Intuitively, this point of
view may be linked to the one consisting in introducing hid-
den variable in Bayesian approaches (see for exemple [3,4])

4.1. Local Filters

A local filter is characterized by its impulse responseH(E,E′),
representing the response of the filter at energy lossE to
a Dirac impulse centered onE′. Knowing this impulse re-
sponse, the response to an arbitrary excitationX(E) is given
by the generalized input/output relationship:

Y (E) =

∫

H(E,E − E′)X(E′)dE′. (7)

We also defined the local frequency response of the filter as :

h(E,ω) = F
E′

→ω
{H(E,E′)} =

∫

H(E,E′)e−jωE′

dE′,

(8)

from which we get :

Y (E) =

∫∫

h(E,ω) X(E′) ejω(E−E′) dω dE′

=

∫

h(E,ω) x(ω) ejωE dω. (9)

4.2. EELS Deconvolution by Local Filtering

Let S(E) be the signal restored by local filtering. For core
loss region spectra, the counter part of equation (4) is given
by:

SCL(E) =

∫

h(E,ω)
jCL(ω)

jLL(ω)
ejωE dω. (10)

For low energy loss spectra, the counter part of equation (5)
is:

S(E)

I0
=

∫

h(E,ω) log

(

j(ω)

z(ω)

)

ejωE dω, (11)

while that of equation (6) is:

S(E)

I0
=

∫

log

(

1 + h(E,ω)
j(ω) − z(ω)

z(ω)

)

ejωE dω.

(12)

5. DESIGN OF LOCAL FILTERS TO EELS
DECONVOLUTION

5.1. Method

For the design of the local filter, we use a non-stationary point
of view by defining the local filter as a low-pass filter with
varying bandwidth. Basically, we aim at designing a local
filter having a local (intantaneous) bandwidth adapted to the
bandwidth of the signal to restore. As a specific example, we
consider a gaussian local filter :

h(E,ω) = exp

(

−
ω2

2Ω(E)

)

. (13)

In this framework, the design of the local filter comes down
to the problem of estimating the bandwidthΩ(E′). For this
problem the proposed solution is as follows :
Initial estimation of the signal to restore: this initial esti-
mated signal, notedS0(E) is obtained by a global low-passed
filtering (equations 4, 5 or 6).

Estimation of Ω(E′): the quantity
∣

∣

d
dE

S0(E)
∣

∣

2
is propor-

tional to the local (instantaneous) bandwidth of the signal



S0(E) and, thus, it can be interpreted as a very imperfect es-
timator of the local bandwidth of the signal to restore. To
compensate these imperfections, we propose to estimate the
local filter bandwidth as:

Ω(E) = α

(

1 + β

∣

∣

∣

∣

d

dE
S0(E)

∣

∣

∣

∣

2
)γ

, (14)

whereα, β andγ are design parameters that enable to ad-
just at best the shape ofΩ(E). The local filter as well as the
restored signal are then functions of these parameters, noted
respectivelyhα,β,γ(E′, ω) andSα,β,γ(E).
Optimal values of α, β and γ: As mentioned before,α, β

andγ are design parameters that have to be chosen to adjust
at best the shape ofΩ(E). In that respect, we consider the
criterion :

C {Sα,β,γ(E)} = Q{Sα,β,γ(E)} + λR{Sα,β,γ(E)} .

(15)

The optimal values ofα, β andγ and consequently the opti-
mal estimation ofS(E) is given by :

Ŝα,β,γ(E) = argmin
α,β,γ

C {Sα,β,γ(E)} . (16)

5.2. Criterion Design

The criterionC {Sα,β,γ(E)} is a compound criterion, the rel-
ative weight of each terms being adjusted by the value ofλ:
- the first term of the criterionQ{Sα,β,γ(E)} is a data fitting
measure :

Q{(Sα,β,γ(E)} =

∫

|J(E) − Jα,β,γ(E)|
2
dE, (17)

whereJα,β,γ(E) corresponds to the EELS spectrum estimat-
ing according equations (1) or (3) withS(E) = Sα,β,γ(E);
- the second termR{Sα,β,γ(E)} is a regularization term:

R{Sα,β,γ(E)} =

∫

Ψ(|DSα,β,γ(E)|) dE. (18)

The choice of both regularization functionΨ(·) and differen-
tial operatorD should be made according to the availablea
priori knowledge on the signal to restore. In general the dif-
ferential operator is of the formD = dn

dEn . The derivative
order depends on the signal to restore. Basically, an-order
derivative operator is suited to the reconstruction of a signal
with a nulln-order derivative (first order derivative for a con-
stant signal, second order derivative for a constant drift signal,
...).

Let us consider now the choice of the regularization func-
tion Ψ(·). The regularization function assigns a cost to every
value of then-order signal derivative and thus should have
some general properties. To be specific, we now restrict our

Ψ(t)

t

Ψ(t) = t
2

Ψ(t) =
√

|t|

Ψ(t) = |t|

Ψ(t) = |t| log(|t|)

Fig. 1: different regularization functions.

attention to edge preserving reconstruction of signal, that is
the restoration of piecewise constant signal for which we fol-
low the approach of [5]. For that case, the relevant differential
operator is the first-order derivative. The classical choice in
regularized least squares deconvolution is the quadratic func-
tion Ψ(t) = t2. But despite its computational advantage (the
criterion C being quadratic, the restored signal is a a linear
estimate), this quadratic function is ill suited to edge preserv-
ing reconstruction. Firstly, large value of the gradient will be
heavily penalized and thus deters the reconstruction of sharp
edges. Secondly, the slow growth ofΨ(t) = t2 around0,
favors the small variations of the signal to restore. Thus, an
edge preserving regularization function should :
– weakly penalize large values of the signal gradient to favor
the reconstruction of sharp edges;
– have a derivative large enough aroundt = 0 to favor flat
segments.

In that respect, among the different regularization func-
tions of figure 1, this is the functionΨ(t) =

√

|t| which is
better suited to edge preserving signal reconstruction. Note
that the functionΨ(t) = |t| log(|t|) which corresponds to
maximum entropy restoration is ill suited to that problem first
because its minimum is not int = 0 and also because large
gradients will be heavily penalized.

5.3. Criterion Minimization

To find the optimal values ofα, β andγ according to (16), we
need a criterion minimization algorithm. We were not able to
calculate an explicit expression of the criterion gradient; thus,
we focuss our attention to algorithm that do not need this gra-
dient. A possible method is given by the Nelder and Mead
algorithm [6] which, due to the small number of parameters
(three), has a reasonable computational burden. However,
this algorithm does not guarantee the criterion minimum to
be reached. In that respect, the Nelder-Mead algorithm is not
optimal. Other optimization algorithms may be used as well
but we don’t have paid further attention to that point.



One may also consider a faster approach to minimize the
criterion based on the following heuristic procedure : instead
of considering the minimization over the entire set of local
filters hα,β,γ(E′, ω), we only consider local filters having an
average bandwidth equal toΩ0. The values ofβ andγ being
fixed, one can evaluateα as :

α = Ω0

[

1

∆E

∫

∆E

(

1 + β

∣

∣

∣

∣

d

dE′
S0(E′)

∣

∣

∣

∣

2
)γ

dE

]−1

(19)

where∆E corresponds to the energy loss range of the signal
considered.Ω0 is estimated as the linear invariant gaussian
filter bandwidth which minimizes the criterion (15). Adopting
such an approach yields a smaller computational burden be-
cause only the two parametersβ andγ are yet to be estimated.
Again, we still cannot guarantee the criterion minimum to be
reached.

6. EXPERIMENTAL RESULTS

The results that are presented, have been obtained on EELS
spectra coming from a pure nickel sample of thicknesst

µ
=

1.4 (t is the sample thickness andµ is the mean free path).
The signal considered (see figure 2, curve 1) shows the Nickel
ionization edgesL1 (1010 eV),L2 (872 eV) andL3 (854 eV).
Due to the sample thickness, the multiple scattering contribu-
tions are quite important : attenuation of theL2 edge, increase
of the mean value after880 eV, L1 edge quite invisible. The
curve 2 of figure 2 shows the deconvoluted EELS spectrum
obtained by the Egerton method. This approach enables to
remove the multiple scattering effects and makes theL2 edge
more visible. But the resolution increase is very weak. In ad-
dition, some residual fluctuations still remain in the non dy-
namical parts of the signal, in particular in theL1 edge region,
making the signal interpretation difficult. The curves 3 and4
show the deconvoluted spectrum obtained by the proposed lo-
cal filtering approach for different values ofλ in criterion (15)
(λ = 20 for curve 3,λ = 10 for curve 4). In both cases, the
regularization function isΨ(t) =

√

|t|. It appears the lo-
cal filtering approach yields simultaneously a greater dynam-
ical resolution and smaller residual fluctuations. In particular
theL1 edge is more easily seen. Comparing curves 3 and 4
shows that increasing the value ofλ results in a more impor-
tant smoothing. This is in agreement with theory.

7. CONCLUSION

In this paper, the design of local filters for EELS deconvolu-
tion has been addressed. The proposed approach uses a non-
stationary point of view in the sense that the local filter is de-
signed to have a variable bandwidth adapted to the signal to
restore. In fact, it appears that the local filter design is nothing
but the estimation of the optimal bandwidth of the local filter.
For that we propose a method transforming this problem into
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Fig. 2: An example of EELS deconvolution. To improve the
readability of the figure the different curves are shifted
with a constant value. Curve 1 corresponds to the
EELS spectrum, curve 2 to the deconvoluted spectrum
obtained by the Egerton method. Curves 3 and 4 cor-
respond to the deconvoluted spectrum obtained by the
proposed approach for different values of the regular-
ization parameterλ.

the determination of three design parameters that minimize
a criterion. This criterion is a compound criterion consist-
ing in a data fitting measure and a regularization term which
can account fora priori knowledge. The effectiveness of the
proposed approach is shown on a pure nickel EELS spectrum
corresponding to theL1, L2 andL3 ionisation edges.
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