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ABSTRACT

In this paper a nonlinear extension to the Wiener filter is 

presented. A direct approach has been devised of replacing 

the autocorrelation function with a novel function called 

correntropy, derived from ideas on kernel-based learning 

theory and information theoretic learning. The linear 

Wiener filter, widely used because of its simplicity and 

optimality for linear systems and Gaussian distribution, is 

no longer effective when dealing with nonlinear time series 

data. The proposed method incorporates higher order 

moments in the general form of autocorrelation and 

improves upon the linear filter. Moreover, the computation 

cost is still lower than some kernel based methods and has a 

closed form solution to the problem unlike neural network 

based methods. 

1. INTRODUCTION 

The Wiener filter is one of the true achievements of 20th 

century optimal system design. It extended the also well 

known solution of regression to linear functional spaces, i.e. 

the space of functions of time (Hilbert Space). However, the 

way Wiener filters are applied normally in digital computers 

is in linear vector spaces ( L) because of the finite impulse 

response (FIR) filter. 

Due to the power of the solution and the relatively easy 

implementation, Wiener filters have been extensively 

utilized in all the areas of electrical engineering. Despite this 

wide spread use, Wiener filters are solutions in linear vector 

spaces. Therefore, many attempts have been made to create 

nonlinear solutions to the Wiener filter mostly based on 

Volterra series [1], but unfortunately the solutions are very 

complex with many coefficients. There are also two types of 

nonlinear models that have been commonly used: The 

Hammerstein and the Wiener models. They are composed 

of a static nonlinearity and a linear system, where the linear 

system is adapted using the Wiener solution. However, the 

choice of the nonlinearity is critical for good performance, 

because linear solution is obtained in the transformed space. 

The recent advances of nonlinear signal processing have 

used nonlinear filters, commonly known as dynamic neural 

networks [2] that have been extensively used in the basic 

same applications of Wiener filters when the system under 

study is nonlinear. However, there are no analytical 

solutions to obtain the parameters of neural networks. They 

are normally trained using the back propagation algorithm 

or its modifications. In some other cases, a nonlinear 

transformation of the input is first implemented and a 

regression is computed at the output. Good examples of this 

are the radial basis function (RBF) network [3] and the 

kernel methods [4,5]. The disadvantage of these alternate 

techniques of projection is the tremendous amount of 

computation required, which make them impractical for 

most real world cases. 

The present paper addressed this problem of practical 

implementation of optimal nonlinear mappings. We show 

how to extend the analytic solution in linear vector spaces 

proposed by Wiener to a nonlinear manifold that is obtained 

by a reproducing kernel Hilbert space. Therefore, we still 

can compute an analytic optimal solution for a broad class 

of nonlinear systems, with control of the size of the linear 

vector space. 

2. RKHS BASED ON CORRENTROPY 

This paper improves upon the concept of the Wiener filter 

by introducing a nonlinear signal processing framework 

based on a new similarity function.  

Correntropy, as proposed in [6], is a function that 

generalizes the autocorrelation function to nonlinear spaces. 

The correntropy of the random process ( )x t  at instances 1t

and 2t  is defined as

1 21 2( , ) [ ( , )]t tV t t E K x x ,    (1) 

where E[.] is the expected value operator, and K a kernel 

function that obeys the Mercer’s conditions [5].One widely 

used kernel function, also used in this paper, is the Gaussian 

kernel given by 
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Correntropy has very nice properties that make it useful 

for nonlinear signal processing [6]. First and foremost, it is 

a positive function, which means that it also defines a 

reproducing kernel Hilbert space (RKHS), but unlike the 

RKHS defined by the covariance function of random 

processes it contains higher order statistical information. It 

can be seen that for V to be a function of a single parameter 

all the even-order (joint) moments must be invariant to a 

time shift. That is, the correntropy can be written as 

( , ) ( )xx xxV t t V . This is a stronger condition than wide 

sense stationarity, which involves only second order 

moments. We will assume this condition in the rest of the 

paper when using ( )xxV .

For discrete-time strictly stationary stochastic processes 

we can estimate the correntropy function as  

1ˆ [ ] ( )
1

N

xx l l m

l m

V m K x x
N m

   (3) 

This new approach quantifies the average angular separation 

in the kernel feature space of the random process at a given 

temporal lag. 

Theorem 1: For any symmetric positive definite kernel 

(i.e., Mercer Kernel) 
1 2

( , )t tK x x defined on , the 

correntropy defined as 
1 21 2( , ) [ ( , )]t tV t t E K x x   is a 

reproducing kernel. 

Proof: It can be proven that 1 2( , )V t t  is positive definite 

and symmetrical [6]. The Moore-Aronszajn theorem [7] 

then implies that it is a reproducing kernel. 

Theorem 2: 1 2( , )V t t is the autocorrelation function of 

some random process. 

Proof: It can be proved that R is the covariance 

function of a random process if and only if, R is a 

symmetric non-negative  kernel [8]. The theorem then 

follows. 

Theorem 3: Let ( )x n  be a stationary stochastic process. 

Then there exists a mapping f  on { ( )}x n  such that 

( , ) ( ( )) ( ( ))V i j E f x i f x j  for a class of joint probability 

density functions (PDFs) of  ( ( ), ( ))x i x j .

Proof: Let ( , )ijP x y  be the joint PDF of ( ( ), ( ))x i x j

such that, 

1

( , ) ( ) ( )ij k k k

k

P x y x y ,   (4) 

where ( ),k k are the eigen functions  and the 

corresponding eigen values of ( , )ijP x y and let ( ),k k  be 

the eigen function and eigen value pairs of the kernel 

function. Then, 

2

{ ( ) ( )}

( , ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ij

i i i

i

i i i

i

i i

i

E f x f y

P x y f x f y dxdy

x y f x f y dxdy

x f x dx y f y dy

  (5) 

Where, ( ) ( )i i x f x dx .

Now,

{ ( , )}

( , ) ( , )

( ) ( ) ( ) ( )

,

ij

i i i j j j

j i

i j ij

j i

E K x y

P x y K x y dxdy

x y x y dxdy  (6) 

where ( ) ( )ij i jx x dx .

Observing (4) and (5) we can construct f  such that, 

i j ij

j

.

Then the following exits satisfying the theorem, 

( ) ( )i i

i

f x x     (7) 

3. FILTER BASED ON CORRENTROPY 

Since there exists a mapping f  which makes the 

correntropy of ( )x n  the autocorrelation of ( ( ))f x n , let’s 

use this function to map the input data which is then linearly 

filtered. This would allow the autocorrelation matrix so 

required to be replaced by the correntropy matrix. In 

practice we would not explicitly use f  as will be seen later. 

But this idea helps to efficiently get a non-linear version of 

the Wiener filter. So let ( ( ))f x n  be the input to the Wiener 

structure and L be the length of the filter. Then we can form 

a composite vector using L lags of ( ( ))f x n  denoted by, 

( ) ( ( )) ( ( 1)) ( ( 1))
T

F n f x n f x n f x n L  (8) 

Also we shall have (L+1) filter weights given by the vector, 

0 1 1

T

L      (9) 

With this formulation the output is given by, 
1

0

( ) ( ) ( ( ))
L

T

i

i

y n F n f x n i     (10) 

Hence we can formulate the optimization problem as 

follows: Minimize the mean square error, 2{ ( ) ( )}E y n d n

with respect to .

We have, 2 2{ ( ) ( )} { ( ) ( )}TE y n d n E F n d n

The optimization is given by the solution of the following: 
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Let us evaluate the term on the left hand side. 

{ ( ) ( ) }

( ( )) ( ( )) ( ( )) ( ( 1))

( ( 1)) ( ( )) ( ( 1)) ( ( 1))

T
E F n F n

f x n f x n f x n f x n L

E

f x n L f x n f x n L f x n L

      (12) 

Choosing ( )f  given by (7) implies, 

{ ( ( )) ( ( ))} { ( ( ), ( ))}E f x i f x j E K x i y i   (13) 

Substituting (13) in (12) and from (11), 

{ ( ) ( )}V E d n f n     (14) 

where, V  is the correntropy matrix whose ijth (i,j=1,2,…,L) 

element is { ( ( 1), ( 1))}E K x n i x n j . Further assuming 

ergodicity we can approximate the {}E  by the time 

average. So we have, 1

1

1
( ) ( )

N

k

V d k F k
N

 (15) 

and the filter output becomes, 

1

1

1 1

1 0 0

1 1

1 0 0

1 1

1 0 0

( ) ( )
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1
( ) ' ( ) ( )

1
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N L L

ij
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N L L

ij
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N L L

ij
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y n F n

F n V d k F k
N

f n i v f k j d k
N

d k v f n i f k j
N

d k v K x n i x k j
N

 (16) 

Where 'ijv  is the ijth element of 1V . The final expression 

is obtained by approximating { ( ) ( )}f n i f k j  by 

( ( ), ( ))K x n i x k j , which holds good on an average 

because of (13). Hence, we do not need to find the 

transformation f(.) since it is never utilized in the 

calculations. The final output is obtained by matching the 

scale of ( )y n to that of the desired signal. There is a 

mismatch in scale most likely because of the above 

approximation and because the mean of ( ( ))f x n  is likely 

not zero. 

4. EXPERIMENTS AND RESULTS 

We shall use the normalized mean square error as a means 

of comparing the performance of the novel correntropy 

filter (CF) and the linear Wiener filter (WF). The 

normalized mean square error (MSE) is nothing but the 

MSE calculated after normalizing the desired signal and the 

output each to unit variance. Here we shall show the results 

of one step prediction of the Mackey-Glass (MG30) time 

series. The simulations implement equation (16) for the CF 

and the equation below for the linear Wiener filter. 
1( ) ( ) ( )Ty n X n R P , where R  is the autocorrelation 

matrix of the input and P  is the cross correlation vector [9]. 

One crucial parameter to choose is the kernel size. The 

kernel size,  is chosen to be 0.15 for these experiments. It 

has been observed that the kernel size should be around 

15% of the standard deviation of the input data. The plots 

include comparisons of MSE values for different filter 

lengths (L in equation (16)) and size of the training data 

(N). The correntropy filter achieves the best result for the 

filter length of L=6 (fig. 1), which is also the optimal length 

according to Takens embedding theorem [10]. Fig. 2 shows 

how the increase in data size affects the performance. Fig. 3 

shows how the two filters perform for different prediction 

steps (the prediction step for the previous two figures is 

one). In any case, the CF always performs better and when 

the optimal filter length of 6 is chosen the MSE using the 

CF is less than 50 % of that using the linear Wiener filter. 

5. CONCLUSION 

This paper presents an investigation on a new type of 

Wiener filter based on the recently introduced correntropy 

function. Correntropy is a positive function and as such 

establishes a RKHS with an inner product that contains 

information about the higher order moments of the 

stochastic process. This paper also shows a means of 

directly using the correntropy as the autocorrelation 

function of the projected data.  This approach can be used to 

extend other linear supervised (and possibly non-

supervised) learning schemes to nonlinear algorithms very 

effectively.  Obviously, the computation cost for this new 

approach is larger than that for the linear Wiener filter. But 

our approach is still less expensive than other kernel based 

methods like kernel regression. This is due to the use of the 

correntropy matrix as the similarity measure, whose 

dimension is the same as the filter order, instead of the 

matrix of projected points required by all kernel methods. 

We also expect that the correntropy filter solution may be 

worse than the kernel methods solution. For instance the 

MSE comparison with a RBF network is shown in fig. 4. 

Fifty training samples were used (for both methods) with 

one RBF centered at each data vector formed by embedding 

six lags of data. But the advantage is that the filter order is 

decoupled from the Gram matrix size. The correntopy filter 

has a structure very similar to the Hammerstein model, but 

notice that here the nonlinearity is implicitly derived from 

the pdf of the data and the kernel employed. The definition 

of this new RKHS can therefore offer a lot of practical 

advantages for nonlinear signal processing, in particular all 

the kernel methods mushrooming in the machine learning 

literature.
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Figure 1. MSE for various filter lengths using N=100. Figure 2. MSE for various training data size with L=6. 

Figure 3. MSE for different prediction steps with L=6, N=100.
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Figure 4. MSE comparison for training data size of 50 
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