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ABSTRACT

In this paper we apply the structural risk minimization (SRM)

principle to derive a blind single-input multiple-output (SIMO)

channel estimation algorithm, which is robust to channel or-
der overestimation. Specifically, the blind estimation is for-
mulated as a support vector regression (SVR) problem in
which the channel coefficients are the Lagrange multipli-
ers of the dual problem. In this paper, we show that the
SRM principle pushes to zero the small leading and trailing
terms of the channel impulse response even when its order is
highly overestimated. The main drawback of this approach
is the high computational cost of the resulting quadratic pro-
gramming (QP) problem. To alleviate this, in this paper we
propose to use a simple and fast algorithm called the Ada-
tron to solve the QP problem. Simulation results are pro-
vided to demonstrate the performance of our channel esti-
mator.

1. INTRODUCTION

Blind estimation of single-input multiple-output (SIMO) chan-

nels is a widely studied problem with many signal process-
ing applications. Since the work of [1], it has been well
known that second order statistics (SOS) are sufficient for

blind identification when the input signal is informative enough

and the channels do not share any common roots. Widely
used SOS-based methods include the subspace (SS) approach,
the least squares (LS) technique and the linear prediction (LP)
methods. However, a common drawback of SS and LS
techniques is their poor performance when the channel or-
der is overestimated. Recently some robust techniques have
been proposed to mitigate this problem (see e.g.,[2, 3]). Al-
though these methods offer increased robustness, they still
fail when the channel order is highly overestimated.

The structural risk minimization (SRM) principle is a
criterion that establishes a trade-off between the complexity
of the solution and the closeness to the data. In particular,
the support vector machine (SVM) technique, which can be
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derived from the SRM principle, typically provides a robust
solution. The work in [4] was the first attempt to apply an
SVM-based approach to the blind identification of SIMO
channels. However, the sparsity provided by the SVM so-
lution was not explicitly exploited in [4]. Later work in
this direction was presented in [5], in which a new blind
identification algorithm based on support vector regression
and specifically tailored for sparse SIMO channels was pro-
posed. The main idea of [5] is that the sparse SIMO chan-
nel identification can be reformulated as a set of regression
problems in which the channel coefficients play the role of
the Lagrange multipliers. By using the e-insensitive Vap-
nik’s loss function in the regression problem, a large number
of Lagrange multilpliers (and, therefore, a large number of
filter coefficients) become zero, thus yielding a sparse filter
estimate.

In this paper we extend the previous work [4, 5] in the
following directions: first, we derive a robust algorithm for
the blind estimation of a non-sparse channel when the chan-
nel order has been highly overestimated; secondly, to avoid
the high computational cost in solving a QP problem, we
use a fast and simple algorithm called the Adatron [6]; and
finally, simulation results are provided to verify that the pro-
posed algorithm outperforms existing robust methods even
when the channel order is highly overestimated.

2. BLIND SIMO ESTIMATION

SIMO channels emerge either when the signal is oversam-
pled at the receiver or from the use of an array of anten-
nas. Without loss of generality, in this work we focus on
the one-input, two-output SIMO system shown in Fig. 1.
In blind channel identification, we need to identify the un-
known channel responses, hi, hy, from the received signals
only. If the order of the channels is M, then the received
signal x;(n) from the ith channel is

ICASSP 2006



X1 yi
hi 00— h2 —

) {
n1 X2 Y2
h2 4?—> h >

Fig. 1. Single-input two-output channel.

When we cast z;(n), h;(k), s(n),n;(n) into vectors
X;, h;, s and n; respectively, Eq. (1) becomes
x; =h;xs+n;, 1=1,2 2)

where * denotes convolution. As shown in Fig. 1, using the
channel outputs (x1,X3) and the channel estimates (h1, hs),
one can obtain the following matrix-vector form,:

Y1 = X1f12 = X2f11 =Yy2, 3)

where X;’s are Toeplitz matrices defined as

X; = : . : . @
or equivalently,
Xh=0, 5)
where
X=X -X; ], ﬁ:[lll}
hy

If we solve (5) by minimizing h XHXh with the con-
straint || h ||= 1, then ¥ is the LS solution which is the
eigenvector corresponding to the minimum eigenvalue of
XHX. Based on (5), we will next develop a SVM based
robust blind identification method even when the channel
order is highly overestimated.

3. SVM BASED APPROACH

3.1. Support Vector Regression

In [5], the authors proposed a blind iterative procedure for
sparse SIMO channels. This procedure offers an increased
robustness in comparison to [2] when the channel is sparse.
We can also exploit explicitly the sparsity provided by SVM
solution to estimate the non-sparse channels when the chan-
nel order is highly overestimated. In this situation, the SRM
principle pushes to zero the small leading and trailing terms
of the impulse response.

From (3), we can formulate the following regression
problems:

X1hy = yq, 6)
Xohy = yq, (7
where the desired output is constructed as y, = ¥5¥2.

This is an intuitive and simple choice, because it drags the
actual outputs y; and y» closer to each other in order to
achieve the equality in (3). To fully exploit the sparse ap-
proximation characteristics provided by SVMs, each of the
regression problems is premultiplied by its conjugate trans-
posed input matrix XZH to yield [c.f. (6),(7)]:

X X hy = Xy, ®)
\/_/ W—/
Wi Y1
X5 Xohy = Xiy,. ©)
N——" N——
w2 y2

The resultant regression problems have input matrices
that are simply the conjugate transposed input matrix X2,
and the corresponding desired output vectors become X7y ;.
Moreover, the new regressor w; admits an expansion in
terms of the filter coefficients, which, in this way, become
the Lagrange multipliers of the SVM formulation.

The SVM method minimizes the following cost function

M
Jw)=CY G+l +5 WP a0

n=1
subject to
7(n) — whx(n) < e+ &, n=1,...,M
whx(n) —g(n) <e+¢", n=1,....,.M
& >0, n=1...,.M
& >0, n=1,...,M

where £ and £* are positive slack variables introduced by
SVM procedure and x(n) denotes the n-th column of X;
fori=1,2.

In (10), the regularization parameter C' controls the trade-
off between the training error and the complexity of the
solution. On the other hand, € is a parameter that deter-
mines the precision of the regression and therefore controls
the sparseness of the final solution. Then, the solution is a
linear combination of input data

M
W = Z(afl —an)X (11)
n=1
where o, o, are two different Lagrange multipliers.

In (11), only a small number of Lagrange multipliers
(o — a,) will be nonzero which corresponds to the chan-
nel coefficients h(0), h(1), ..., h(M —1). Accordingly, the
overestimated channel coefficients will be zeros by the SRM
principle.
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3.2. The Adatron algorithm

The computational cost in solving the QP problem in Eq. (10)
is the main drawback of applying the SVM technique to
practical estimation problems. Several techniques have been
proposed to solve this problem, including the use of iterative
reweighted least squares IRWLS) techniques [7, 8] and the
Adatron algorithm [6, 9]. The IRWLS requires a matrix in-
version at each iteration so the computational burden could
be considerably high even for a moderate number of data.
On the other hand, the Adatron algorithm is a much sim-
pler least mean square (LMS)-like adaptive algorithm and
its convergence rate is exponential with the number of iter-
ations. However, it is a memory intensive method because
all the kernel products need to be precomputed and saved.
Until [10], the Adatron algorithm has only been used for
classification problems.

In this paper, we use the Adatron algorithm to solve the
re-formulated regression problems in Egs. (8) and (9). In
dual representation, the optimization problem in Eq. (10)
can be written as

L:—%Z Z(a;ﬁ — o)), — ) < Xp, Xy >
7\4:1 " M M
- GZ(O‘; +an) + Zyn(a;kl —ap) + Z Moy, —
n=1 n=1 n=1

subject to a,, o) € [0, C).

The Adatron algorithm maximizes the above Lagrangian
with gradient ascent techniques. Specifically, the Lagrange
multipliers are updated according to

N
day, =1 <_ Z (am - afn) <Xp,Xm > +Yn —€— >\> 5

m=1

12)

M
6a2=n<2(am—ai‘n)<xmxm>+yn—e+A>,

m=1

13)

followed by updating a,, and o with (o, + da,)" and
(af +8az)T, respectively, where a' = max{a, 0}. In addi-
tion, the bias b is updated as to b+ da, — dc); and the evolu-
tion of this bias value can be used to check the convergence
of the algorithm. As we can see in Egs. (12) and (13), the
Adatron algorithm is very simple to implement especially in
DSP hardware. To run this algorithm, all one needs is just
an adder and a multiplier. Furthermore, the computation
time of Adatron increases linearly with the number of data
while the conventional QP’s increases exponentially. This
simplicity is its main advantage.

Using this algorithm, we propose a blind channel esti-
mation method as summarized under Algorithm 1, which is
robust to channel order overestimation.

Algorithm 1 Summary of the robust blind SIMO channel
estimation method

initialize ¢, C, hy, ho

while Convergence criterion does not meet do
Calculate yl,yg:lelg =y; and ngll =Yy
Calculate y; = (y1 +y2)/2
Premultiply X 17, X
Solve (10) for i=1,2 using Adatron algorithm (12),(13)
Obtain h; for i=1,2 from (11)

end while

—5- SVM with Adatron
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Fig. 2. Performance comparison when the channel order is over-
estimated by 20 taps (raised-cosine pulse followed by a multipath
channel).

4. SIMULATION RESULTS

Several simulations have been conducted to test the perfor-
mance of our proposed algorithm. The performance is mea-
sured in terms of the normalized mean squared error (NMSE)
defined as [3]:

2
0x,1

NMSE = —— min |loh — h
[l h? a,k>0 0.,
M —M—k
where M’ > M is the estimated channel order.

In this example we consider a raised-cosine pulse with
duration 4T (T is the symbol period) with a roll-off factor
0.1 and the multipath channel is h(t) = §(t) — 0.75(t — ).
The input signal is i.i.d. BPSK signal and the received data
is sampled at twice the symbol rate to obtain a SIMO sys-
tem. Fig. 2 depicts the performance at different SNRs. Note
that the performance of our proposed method using the Ada-
tron algorithm is much better than other methods, especially
at low SNR. In Fig. 3, 50 trials of our proposed algorithm
and the robust method proposed in [2], it is clear that the
estimation of our proposed method at zero tap coefficients
is much better than the robust-SS method.
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Fig. 3. 50 trials of the SVM based method using the Adatron and robust-SS method when the channel order is overestimated by 20 taps

and SNR=20dB.

5. CONCLUSIONS

In this paper we extend our previous work [5] to robust
blind estimation of non-sparse SIMO channels when the
channel order is highly overestimated. To reduce the com-
putational cost of solving the QP problem, we use a fast
and simple algorithm called the Adatron. We have shown
that the proposed algorithm is easy to implement in DSP
hardware and the good generalization performance of SVM
leads to a remarkable improvement over other robust meth-
ods, mainly when the channel order is highly overestimated
and for moderate or low SNRs. Finding a true sample by
sample (on-line) training algorithm will be an interesting
further research.
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