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ABSTRACT

In this paper, we consider the problem of detecting and lo-

cating buried land mines and subsurface objects by using

seismic waves. We demonstrate an adaptive seismic sys-

tem that maneuvers an array of receivers, according to an

optimal positioning algorithm based on the theory of opti-

mal experiments, to minimize the number of distinct mea-

surements to localize the mine. The adaptive localization

algorithm is tested using numerical model data as well as

laboratory measurements performed in a facility at Georgia

Tech. It is envisioned that the future systems should be able

to incorporate this new method into portable mobile mine-

location systems.

1. INTRODUCTION

Buried land mines and similar subsurface structures pose a

huge threat to resettling civilians. It takes significant time

and resources to clear out regions contaminated by mines,

so it is important to develop efficient detection and localiza-

tion systems to create a safer environment. Georgia Tech

has built a laboratory to collect the real data needed to in-

vestigate buried land mine and subsurface target detection

problem [1]. In laboratory data, the detection schemes us-

ing seismic waves have been extensively tested and shown

to have satisfactory mine detection probabilities [1, 2].

Seismic waves, scattered from man-made targets, in-

duce resonances that result in a stronger sustained reflection

from mines than from clutter objects. Hence, it is possi-

ble to use seismic imaging to discriminate land mines from

common types of clutter such as rocks, wood, etc. To detect

a mine, a seismic wave is launched from a source at a known

location. The seismic wave then travels through the soil and

interacts with objects under the ground. The resulting prop-

agating waves in an elastic medium are of two main types:

surface waves and body waves. The existing research con-

centrates on the reflected surface waves (Rayleigh waves)
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for detection, because the Rayleigh waves carry most of the

returned energy.

Typical imaging methods are time consuming and ex-

pensive if measurements are taken over 2D grids with large

apertures in order to have sufficient image resolution over

the space of interest. Once a complete image is formed

from a large data set, it is then searched to find targets [2].

However, to image any single target, only a small subset

of the measurements is actually required, but this subset is

not known ahead of time. Therefore, if we want to reduce

the time or the resources needed to localize a target, we can

use maneuvering receiver(s) to take the minimum number

of measurements needed, if we can develop an adaptive al-

gorithm to find the best receiver positions. With each new

measurement we want to maximize the information gained

about the target. In our case we use a maneuvering 3x3 array

to create an efficient system to detect and locate mines. In

the method proposed here, any one image, created at succes-

sive measurements, has low resolution. However, as the ar-

ray maneuvers, the cumulative imaging operation improves

the resolution around the true mine location.

The array movement is based on the theory of optimal

experiments [3]. We employ a 2D sensor array with known

relative receiver positions. Starting at an arbitrary array po-

sition, we calculate an initial estimate of the target loca-

tion. Then, the variance of the location estimate is calcu-

lated, by using the Fisher information matrix (FIM). Based

on the expected value of the FIM, the next optimal array

position is determined by using the theory of optimal ex-

periments [3, 4]. The search for the optimal array position

maximizes the determinant of the Fisher information ma-

trix. The two steps involved in the maneuver strategy for a

mobile array of sensors are shown in Figs. 1(a) and (b).

The following sections will describe the data model, which

leads to the target position estimate and its performance

bounds. Then the algorithm for determining the next op-

timal array position is shown. Performance of the algorithm

is demonstrated by using the experimental data collected in

a laboratory setting [1].
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Fig. 1. Algorithm mechanics illustrated: (a) Source gener-

ates a probing pulse, and the waves are reflected from the

target and collected by the array. At step i, zi denotes the

target position and ζi the array center. (b) Estimate of the

next array position ζi+1 by using the cumulative Fisher In-

formation Matrix measure and a circular constraint on the

movement.

2. DATA MODEL, TARGET LOCATION

ESTIMATION AND PERFORMANCE BOUNDS

Consider a single seismic source and an array that consists

of P seismic receivers, where the source and receivers are

co-planar. We model the soil as a highly dispersive medium

with frequency dependent velocity. Hence, the signal pro-

cessing is done in the frequency domain, even though the

measurements are taken in the time domain. The source

generates a probing pulse which is reflected from buried

targets and is collected by the seismic sensors. The prob-

ing pulse and reflected waves at each sensor are separated

by using the algorithm in [6]. The reflected signal from the

target can be represented as [5]:

y(ω) = A(ζ, z, ω)s(ω) + n(ω), (1)

where y(ω) ∈ CP×1 is the noisy array output vector, n(ω) ∈
CP×1 is a complex additive noise, and s(ω) ∈ CK×1 is the

signal vector. The array manifold A(ζ, z, ω) has elements

given by the Green’s function:

g(r, r′, ω) =
i

4
H

(1)
0

(

ω

v(ω)
|r − r′|

)

(2)

where H
(1)
0 is the zero-order Hankel function of the first

kind, and v(ω) is the frequency-dependent velocity. Spec-

trum analysis of the surface waves is used to determine the

velocity vs. frequency [6].

Let Yt =
[

yT
t (ω1) , . . . , yT

t (ωN )
]T

, Yt ∈ CPN×1, be

the data vector, formed by aggregating the Fourier trans-

form at frequencies ωi of the received data yt at each seis-

mic sensor during the batch period t, where i = 1, 2, . . . , N .

The choice of the Fourier transform frequencies is discussed

later. Under the i.i.d. Gaussian noise assumption, the prob-

ability density function for the current received data is given

by [7]:

p(Yt) =

N
∏

l=1

1

πP σ2P
t

exp

{

−
1

σ2
t

||yt(ωl) − At(ωl)st(ωl)||
2

}

(3)

Using (3), one can calculate the negative log-likelihood func-

tion of the data:

L− = NP log(πσ2
t ) +

1

σ2
t

N
∑

l=1

||yt(ωl) − At(ωl)st(ωl)||
2.

(4)

The ML estimate, maximizing the log-likelihood, can be de-

termined by minimizing L−. In (4), both the target signal

and the noise variance are unknown. Therefore, we first

estimate the noise variance by fixing the target position in

At(ω) and the source signal s(ω). The ML estimate of the

noise variance σ2
t is given by:

σ̂2
t =

1

NP

N
∑

l=1

||yt(ωl) − At(ωl)st(ωl)||
2. (5)

When the estimated noise variance is used in conjunction

with (4), the ML target signal estimate can be calculated:

ŝt(ωl) =
(

AH
t (ωl)At(ωl)

)−1
AH

t yt(ωl). (6)

Substituting (5) and (6) into (4), one can determine the ML
cost function to minimize as a function of z:

Jt(z) =
NX

l=1

���������I − At(ωl)
�
AH

t (ωl)At(ωl)
�
−1

AH

t (ωl)

�
yt(ωl)

��������2
(7)

The target location estimate is then given by the minimum

of the cost function (7):

z = arg min
z

Jt(z). (8)

The Cramér-Rao lower bound (CRLB) is an informa-

tion theoretic inequality, which provides a lower bound for

the variances of the unbiased estimators. The Cramér-Rao

lower bound is the inverse of the Fisher information ma-

trix (FIM). Assuming that the variance of the additive noise

in (1) is known, the log-likelihood function for a single tar-

get can be written as:

L(ζt, z)
.
= −

1

σ2
t

N
∑

l=1

||yt(ωl) − at(ζt, z, ωl)st(ωl)||
2 (9)



where at(ζt, z, ω) is the propagation (steering) vector from

the array center to the target position. The (i, j)th element

of the FIM is given by the partial derivative of (9) with re-

spect to the ith and jth parameters of the vector z [7]:

Fi,j(z, ζt) = Ey

{

∂2L(z, ζt)

∂zi∂zj

}

= −
2

σ2
t

N
∑

l=1

ℜ

{

(

∂at(z, ζt, ωl)

∂zi

)H
∂at(z, ζt, ωl)

∂zj

}

(10)

where Ey{.} denotes the expected value, and F is the Fisher

information matrix as a function of the target position z and

the array center ζ. The elements of the steering vector are

given in terms of 2-D Green’s function in (2). The partial

derivative of the steering vector is calculated with respect to

the target coordinates for a fixed array center.

3. MOVEMENT OF THE SEISMIC ARRAY VIA

OPTIMAL EXPERIMENTS

In the previous section, we described how to determine the

target position and its FIM which represents the uncertainty

about the estimates as a function of the array center posi-

tion. Recall that the sensors in the 2D array have known

locations with respect to the array center ζ. Suppose that

we have estimated the target location at batch t, and now

we are interested in determining the next optimal array cen-

ter position candidate for the batch t + 1. Our approach in

selecting the new sensor position to reduce the expected un-

certainty in the estimated target coordinates is to minimize

the determinant of the CRLB, or equivalently, maximize the

determinant of the FIM as a function of the array center.

In the literature of optimal experiments, this technique is

called D-optimal design [3], and has been applied to metal

detectors in [4]. Other approaches might minimize the trace

of the CRLB or minimize its maximum eigenvalue.

Let q represent the determinant of the FIM. The cumula-

tive effect of the measurements up to batch t can be written

as:

q ({ζ1, . . . , ζt}) = |F (ζ1, . . . , ζt)| =

∣

∣

∣

∣

∣

∣

t
∑

j=1

F (ζj)

∣

∣

∣

∣

∣

∣

(11)

where | · | stands for determinant and Ft represents the FIM

at batch t. The logarithmic increase due to the additional

measurements at batch t + 1 is given by:

δq(ζt+1) = ln q ({ζ1, . . . , ζt+1}) − ln q ({ζ1, . . . , ζt})

= ln
∣

∣I + F (ζt+1)B
−1
t

∣

∣

(12)

where I is an identity matrix, and Bt =
t

∑

j=1

F (ζj). To

achieve the maximum expected information gain, the next

optimal array center can be determined by

ζt+1 = argmax
ζ

ln
∣

∣I + F (ζt+1)B
−1
t

∣

∣ . (13)

In this optimization problem, there are additional constraints

that come from the configuration of the seismic system.

First of all, the target reflections do not behave as an omni-

directional active source. Hence, we need to make sure that

the receiving array is between the source and the targets all

the time to receive the reflected waves. One way to impose

this condition is to use a movement step size of radius r

from the previous array center position as shown in Fig. 1.

As a result, the maximum of (13) is calculated on a circle

of radius r, where the center of the circle is at the previous

optimum array center position.

4. PROCESSING OF EXPERIMENTAL DATA

An experiment has been conducted in our laboratory setting,

where buried mines in a sandbox are used as targets [1]. A

shaker is used as a seismic source, where the input signal

is a differentiated Gaussian pulse centered at 450 Hz. In

the experiment, the seismic sensors are ground contact ac-

celerometers. The target is a TS-50 (anti-personnel) land-

mine buried at a depth of 1 cm. We estimate the wave-

number for the reflected signals at different frequencies by

using the algorithm presented in [6]. To separate the for-

ward and reflected waves, a linear array of fifteen sensors is

used, however only three are kept for use in the maneuver

algorithms. With three linear arrays, a total of nine sensors

(3 × 3) are used in actual imaging.

Once the data is collected and the waves are separated

the next step is to estimate the target position. The initial

estimate is shown as a surface plot (Fig. 2). The surface plot

is obtained by using (7), and this cost function is calculated

at each point in a 2D grid. The minimum of Jt(z) gives

the target position estimate. However, the inverse of this

function is plotted in the surface plots. Based on an initial

estimate, the next optimal array position is determined by

using (13). This function is calculated at each grid point

as a function of array center position, using the estimated

target position from the previous step. The surface plot is

shown in Fig. 3, along with the circle constraint, at a radius

of 30cm.

Once the next optimum array position is determined and

the array is moved to a new position, a new batch of data is

collected. We then append the new data set to the exist-

ing data. The new target position estimate and the next op-

timum movement are determined by using the cumulative

data. Further steps are shown in Figs. 4. With each succes-

sive step the target position estimate is improved, along with
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Fig. 3. Next Optimal array position: Surface plot obtained

by using (13), shown on a linear scale, with a circle of radius

30 cm.

a decrease in the uncertainty ellipse, because the cumulative

estimation is effectively increasing the aperture.

5. CONCLUSIONS

The algorithm presented in this paper shows that it is pos-

sible to control a maneuvering seismic array to find buried

targets from reflected surface waves. A complete mine find-

ing system would require one more step to distinguish a

land mine from clutter. Since the maneuver algorithm can

obtain very accurate estimate of the target location, the ar-

ray would be positioned to exploit the “resonance property”

of buried land mines to make this final confirmation. The

example in the paper uses a total of 180 seismic measure-

ments to locate the target. This can be compared with a

conventional method that would scan an entire grid of size

(100× 100) [1, 2] in order to find the same target within an

area of (2 × 2) meters. Furthermore, the whole scan would

take a few hours to isolate a resonating target.
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